Energy Storage Materials 44 (2022) 557-571

journal homepage: www.elsevier.com/locate/ensm

Energy Storage Materials

Contents lists available at ScienceDirect = energy
storage
materials

g

Data-driven systematic parameter identification of an electrochemical N

Check for

model for lithium-ion batteries with artificial intelligence Rt

Weihan Li*»""* Iskender Demir®', Decheng Cao? Dominik J6st®, Florian Ringbeck®",

Mark Junker®®, Dirk Uwe Sauer <

a Chair for Electrochemical Energy Conversion and Storage Systems, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, Jaegerstrasse

17/19, Aachen, 52066, Germany
b Juelich Aachen Research Alliance, JARA-Energy, Germany
¢ Helmholtz Institute Muenster (HI MS), IEK-12, Forschungszentrum Juelich, Germany

ARTICLE INFO ABSTRACT

Keywords: Electrochemical models are more and more widely applied in battery diagnostics, prognostics and fast charging
Lithium-ion control, considering their high fidelity, high extrapolability and physical interpretability. However, parameter
Battery identification of electrochemical models is challenging due to the complicated model structure and a large number

Electrochemical model
Parameter identification
Artificial intelligence

of physical parameters with different identifiability. The scope of this work is the development of a data-driven
parameter identification framework for electrochemical models for lithium-ion batteries in real-world operations
with artificial intelligence, i.e., the cuckoo search algorithm. Only current and voltage data are used as input for
the multi-objective global optimization of the parameters considering both voltage error between the model and
the battery and the relative capacity error between two electrodes. The multi-step identification process based
on sensitivity analysis increases the identification accuracy of the parameters with low sensitivity. Moreover, the
novel identification process inspired by the training process in machine learning further overcomes the overfitting
problem using limited battery data. The data-driven approach achieves a maximum root mean square error of
9 mV and 12.7 mV for the full cell voltage under constant current discharging and real-world driving cycles,

respectively, which is only 17.9% and 42.9% of that of the experimental identification approach.

1. Introduction
1.1. Motivation

Driven by both political and technological initiatives towards eco-
logical mobility, transportation electrification in various areas, such as
vehicles, trains, ships and aircraft, is becoming more and more popular.
Among all the energy sources for the electrified transportation appli-
cations, such as plug-in hybrid electric vehicles (PHEVs), hybrid elec-
tric vehicles (HEVs), and electric vehicles (EVs), the lithium-ion battery
(LIB) is one of the most promising candidates, combining high energy
density, low self-discharge, long lifetime and reliable safety [1]. Over
the past years, significant research has been conducted to build sophis-
ticated models in different scales to estimate and predict battery dynam-
ics. Compared with equivalent circuit models (ECMs), which are used
in most battery management systems (BMSs), the electrochemical mod-
els (EMs) promise numerous improvements considering extrapolation

ability and physical representation of battery internal states, especially
under extreme conditions.

Although various research has been conducted to accomplish tasks in
BMS based on EMs, such as state estimation [2-4], aging identification
[5], power prediction [6] and fast charging control [7], fast and accurate
identification of all the parameters in the EMs for new batteries remains
as one of the challenges due to a large number of parameters with vari-
ous sensitivities and the high nonlinearity and complexity of the battery
model. While the formulation of the model equations in EMs can also be
dealt with abstractly for all batteries with different chemistry, the pa-
rameterization must be carried out individually for each specific cell as
the parameter values may vary due to different cell designs. Conclusions
about the internal states of the battery can only be drawn if an accurate
parameter set of the model is provided. Ecker et al. [8,9] determined
and parameterized an EM for an NMC/graphite pouch cell experimen-
tally by opening the cell under an argon atmosphere and measuring the
parameters with various laboratory apparatus. Similarly, Schmalstieg
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et al. [10,11] further extracted the physical parameters together with
thermal parameters from a high-power prismatic cell by opening the
cell and measuring the parameters experimentally. Although these pio-
neering work provided not only parameter values for specific cells but
also the determination procedures in detail, invasive parameter identi-
fication steps can be very time-consuming, expensive and lack accuracy
for some dynamic applications.

1.2. Literature review

Although the poor identifiability of the model parameters caused by
nonlinearities, redundant definitions, intertwined physical phenomena
and time-scale separations in battery dynamics [12] is a great challenge,
data-driven non-invasive methods are attracting more and more atten-
tion from both industry and academy due to the cost and time reduc-
tion compared with invasive experimental procedures. In some cases,
the cells are even not allowed to be opened for the post-mortem mea-
surement due to a non-disclosure agreement with the cell manufacturer,
which further raises the requirements on accurate and fast data-driven
parameter identification methods. Among the approaches found in the
literature, various gradient-based nonlinear least-square regression al-
gorithms have been used widely to identify the parameters by minimiz-
ing the sum of the squared voltage errors. Boovaragavan et al. [13] esti-
mated four transport and kinetic parameters using a reformulated EM for
an LCO/graphite cell. Similarly, Ramadesigan et al. [14] identified ef-
fective kinetic and transport parameters from experimental data. In both
cases, the Jacobian-based Gauss-Newton method was used to solve the
nonlinear regression problem. Considering the better efficiency over the
Gauss’ algorithm in dealing with nonlinear problems, Santhanagopalan
et al. [15] identified five parameters under constant charge and dis-
charge currents for the pseudo-2-dimension (P2D) model and a refor-
mulated EM, respectively, using the Levenberg-Marquardt method. In
Ref. [16], nine parameters were identified with the same algorithm for
a reduced-order EM. However, no experimental validation with a LIB
cell was carried out to verify the identification reliability. Schmidt et al.
[17] further increased the number of identifiable parameters by adding
the number of experiment datasets, which exposed the contribution of
the increase of experimental data to a successful parameter identifica-
tion. A total of 24 parameters were identified with the pattern search
algorithm for an extended single particle model.

With the success of artificial intelligence, especially the metaheuris-
tic algorithms, which is a group of bio-inspired gradient-free iterative
optimization processes that are immune to local minimum traps [18] in
solving the global optimization problems in other research fields, more
and more research was conducted successfully in identifying the phys-
ical parameters of EMs. Genetic algorithm (GA) is one of the most fre-
quently used metaheuristic algorithms for data-driven parameter iden-
tification [19-28]. Forman et al. [19] assessed the parameter identifi-
ability with Fisher information and identified a set of 88 parameters
of a P2D model by GA based on constant-current charge and discharge
dataset. However, the dataset doesn’t include the data with high dy-
namics, which are essential for the identification of impedance-related
parameters. The identification of a large number of insensitive param-
eters not only increases the computation burden exponentially but also
doesn’t contribute to any significant model performance increase. Zhang
et al. [21,22] proposed a multi-objective optimization approach consid-
ering both voltage and temperature error of the model for the identifica-
tion of 25 parameters with GA. In comparison, Li et al. [23] proposed a
divide-and-conquer strategy to divide the full set of P2D parameters into
two groups for separate identification with GA. However, the identified
parameters were not validated under other experimental conditions. In
Ref. [24], Pang et al. proposed a systematic parameter identification
scheme to conduct the identification of 16 parameters for an extended
SPM with GA and validation against the different experimental data ac-
quired from a 2 Ah NMC/graphite cell.
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Compared with GA, particle swarm optimization (PSO) has an in-
built guidance strategy, which offers distinct notable advantages, e.g.,
greater diversity and exploration, faster convergence and more variety
in search trajectories. The use of memory to store the previous best so-
lutions obtained by every candidate results in faster convergence and
higher robustness of PSO. Therefore, it has also been used in the identi-
fication of parameters for both ECMs [29] and EMs [30]. Rahman et al.
[30] tracked the change of four parameters of a cylindrical cell with
an LCO cathode during aging by PSO. Yang et al. [31] identified 16
physical parameters based on the discharge experiment of 0.5 C with
PSO. Chu et al. [32] designed a multi-step approach to identify differ-
ent parameters divided by frequency decomposition in each step and the
reformulated EM with the identified parameters was validated experi-
mentally under a standard driving cycle. Moreover, Fan et al. [33] fur-
ther proposed a two-step parameter identification approach based on
a large number of experimental datasets to identify 26 parameters for
an NMC/graphite battery cell. Although GA and PSO are widely used in
parameter identification of the EMs, the identification efficiency and ac-
curacy need to be further increased in both algorithm and methodology
level considering the industry need. Furthermore, parameter overfitting
is a regular problem due to the lack of data as a result of the required
short testing time, which needs to be solved by redesigning the whole
data-driven identification framework. There is also rare work compar-
ing the identification accuracy between the experimental method and
the data-driven method.

1.3. Contributions

This paper aims to bridge the aforementioned research gap and
proposes a data-driven approach using artificial intelligence, i.e., the
cuckoo search algorithm, to identify the parameters of EMs in real-world
operation. The comprehensive benchmarking of the parameter values in
literature defines the boundary values of the parameters in electrodes
and electrolytes with the same chemistry, remaining the physical mean-
ing of the parameters. Parameter sensitivity analysis was further car-
ried out to categorize the total 26 parameters into three groups with
high, medium and low sensitivity. The proposed framework only uses
the current and voltage data of a battery to identify the parameters.
Not only voltage error between model and cell but also capacity error
between two electrodes are defined as optimization objectives, which
reduces the identification errors of the capacity-related parameters. Fur-
thermore, the multi-step identification approach considering the differ-
ences of the parameter sensitivities increases the identification accuracy
of the parameters with lower sensitivity. The proposed framework was
first validated numerically with a virtual cell and compared with other
data-driven methods considering the identification errors of parameters,
computation efficiency and convergence speed. The verification of the
data-driven parameter identification framework with an NMC/graphite
commercial cell experimentally further highlights the robustness and
reliability of the approach compared with invasive experimental identi-
fication methods.

2. Electrochemical modeling

The P2D model developed by Doyle et al. [34] describes the solid and
electrolyte dynamics of LIBs in the positive electrode, separator and neg-
ative electrode. On the macroscopic scale, the chemical reaction kinet-
ics are assumed to influence the battery dynamics only in x-dimension,
where lithium ions can transfer in the electrolyte throughout all domains
in the liquid phase. On the microscopic scale, the solid particles in both
electrodes are assumed to be spheres with specific radii, and lithium ions
can diffuse along the r-dimension inside the solid phase. As shown in the
schematic of the P2D model in Fig. 1, the whole LIB is divided into three
different domains, i.e., anode (ranges from 0~ to L), separator (ranges
from 0% to L*) and cathode (ranges from L* to 0%). The particles rep-
resent the porous electrodes and are surrounded by the electrolyte, and



W. Li, I. Demir, D. Cao et al.

Table 1
Summary of the governing equations of a P2D-model.
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Fig. 1. Schematic of the electrochemical modeling for LIBs.

the electrodes are separated by the separator. During charging, lithium
ions deintercalate from the active material in the positive electrode and
move into the electrolyte solution. By diffusion and ionic conduction,
the lithium ions transport through the separator and arrive at the sur-
face of the negative electrode and finally intercalate into the active ma-
terial. Several coupled nonlinear partial algebraic differential equations
(PDAEs) map the transport processes of lithium ions in spatial and tem-
poral terms within the electrode and the electrolyte, which are summa-
rized together with the boundary conditions in Table 1. Both the con-
centration of lithium ions in electrodes and electrolyte, i.e., ¢ (r, x, ) and
¢,(x,1), and the potentials within the cell, i.e., solid potential, ®(x, ),
electrolyte potential, ®,(x, ), open-circuit potential (OCP), U(x, ), and
lithium-intercalation overpotential, n(x,?), can be derived from these
equations. To consider the properties of the battery materials, effective
conductivity and diffusion coefficients with “eff” suffixes are used based
on Bruggeman’s theory. Moreover, a = (3/R, )¢ represents the specific
interfacial area, a, = a, = 0.5 are the charge transfer coefficients, and
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the descriptions of the other parameters are summarized in Table 2.
The readers are referred to [35] for further derivation details.

Most numerical methods for model-based state estimation and pa-
rameter identification require the model to consist of ordinary differen-
tial equations (ODEs) or algebraic equations (AEs) rather than PDAEs.
The model-order reduction process is very challenging to carry out in a
way that is numerically stable and computationally efficient for a wide
range of battery operating conditions and parameter sets. In this work,
the PDAEs of the P2D model are transformed into ODEs and AEs using
the finite-difference method [36] in micro-scale and the finite-volume
method [37] in macro-scale. The number of discretization nodes for both
micro-scale and macro-scale in each domain equals 10, considering the
compromise between model accuracy and computational efficiency.

3. Parameter sensitivity analysis

In contrast to ECMs, EMs consist of a large number of physical param-
eters, and the experimental identification process of these parameters is
very complicated, expensive and time-consuming [8,9]. To identify the
parameters of the EM based on current and voltage data, reasonable
parameter value ranges need to be provided to maintain the physical
meaning of the identified parameters and the sensitivity of the param-
eters under the specific ranges needs to be analyzed before identifica-
tion. As summarized in Table 2, the total 26 physical parameters are
grouped into four categories, i.e., geometric parameters, transport pa-
rameters, kinetic parameters, and concentration parameters. The value
ranges of these parameters are determined for NMC/graphite cells based
on a comprehensive benchmarking with more than 25 pieces of litera-
ture and experimental measurement. The superscripts + , - and s of
the parameters represent cathode, anode and separator, respectively. To
obtain the boundary values for the physical parameters, no other con-
straints except the cell materials are applied in the literature review of
the parameter values in Table 2, which leads to a relatively large value
range for some parameters. Therefore, these parameter boundaries can
be used for parameter identification of almost all NMC/graphite LIB cells
with small adaptions. The only parameters that require opening the cell



W. Li, I. Demir, D. Cao et al.

Energy Storage Materials 44 (2022) 557-571

Table 2
Summary of parameter ranges and sensitivity of lithium-NMC-graphite cells.
Category Parameter Unit Description Boundary Reference Sensitivity
Geometric parameters Lt um Cathode thickness 35-79 [8,38-44] High
LS um Separator thickness 10-30 [8,38-43,45,46] Medium
L™ um Anode thickness 35-79 [8,38-44] High
A m? Electrode surface area 0.378 - 0.395 Measurement High
ef - Cathode active material volume fraction 0.35- 0.5 [8,38,42,44] High
I - Anode active material volume fraction 0.4-0.5 [8,38,42,44] High
el - Cathode electrolyte volume fraction 0.27 - 0.45 [8,38-41,43,44,47] Medium
I - Separator electrolyte volume fraction 0.4 -0.55 [8,38-44,47] Low
£ - Anode electrolyte volume fraction 0.26 - 0.5 [8,38-41,43,44,47] Medium
R pum Cathode particle radius 1-11 [8,40-42,44,45,47] High
R, um Anode particle radius 1-11 [8,40-42,45,47] High
Transport parameters Dt 1074 m2s~! Cathode solid diffusion coefficient 1-10 [38,40,41,43,45,47,48] High
Dy 107 4m?s~! Anode solid diffusion coefficient 1-10 [38,40,43,45,47,48] High
D, 10710m?s~! Electrolyte diffusion coefficient 1.5-4.5 [8,39,43,49,50] Medium
bt - Cathode Bruggeman coefficient 1.3-1.7 [39,45] Low
b* - Separator Bruggeman coefficient 1.3-1.7 [39,43,45,48] Low
b~ - Anode Bruggeman coefficient 1.3-1.7 [39,45] Low
ta' - Transference number of lithium cation 0.25 - 0.43 [8,38,39,43,47-49,51,52] Medium
o: Sm! Cathode electrode conductivity 36-185 [53] Low
oy Sm™! Anode electrode conductivity 1-1-10% [54] Low
Kinetic parameters Kt 10-"'m?3 /(mol®>s) ~ Cathode reaction rate coefficient 1-10 [8,38,41,42,44] High
I's 10~"'m?3 /(mol®>s)  Anode reaction rate coefficient 1-20 [8,38,41,42] High
R, 1073Qm? Anode SEI film resistance 1-10 [42,48] High
Concentration parameters ¢ 10*molm=3 Cathode maximum ionic concentration 48-52 [8,38,42,45,47,48] High
€ max 10*molm™=3 Anode maximum ionic concentration 2.9-3.3 [8,38,42,45,47,48] High
Ceo 10 molm™3 Initial electrolyte concentration 1-1.2 [8,39-41,43,45,47,48] Medium

to determine the boundaries are the electrode surface area, A, and the
OCP of the electrodes. The confidence interval of the measurement is
used as the boundaries of A. The opening of the cell can be avoided by
implementing optical measurement methods to determine the bound-
aries of the geometric parameters and determining the OCP from the
literature.

Each physical parameter individually influences the model output,
i.e., terminal voltage, under a designed current input, which represents
the sensitivity of the parameters. The consideration of insensitive pa-
rameters with large variances in the optimization problem is known to
decrease the overall estimation quality substantially [55]. We have in-
vestigated the parameter sensitivity of the P2D model with the One-At-
a-Time (OAT) method in our previous work [56]. The sensitivity of the
parameters is mainly determined by the model structure, value range
of the parameter itself, and the value of the other parameters. There-
fore, all the above three factors need to be chosen to be similar to those
in real-world operating conditions to investigate the sensitivity of these
parameters. For all individual parameters, simulations were carried out
in which the examined parameter takes up ten discrete values under
uniform distribution between its value boundaries, as summarized in
Table 2, and the remaining parameters are kept constant as the nominal
value. The influence of different C-rates and depth of discharge (DOD)
regions of the respective parameters was tested at constant C-rate charg-
ing processes. The sensitivity of the seven capacity-related parameters
varies significantly at different DOD regions due to the horizontal shift
of the end-of-charge point, while the variations caused by the increase
of the C-rate are moderate. In contrast, the other parameters show a sig-
nificant sensitivity increase with an increase of the C-rate. In addition,
the sensitivity of the parameters on real-world driving cycles was also
investigated and the results are summarized in Table 2 and depicted in
Fig. 2. Out of 26 parameters, 14 parameters are identified as parameters
with high sensitivity for the terminal voltage considering the values of
the normalized sensitivity index are over 0.01. Furthermore, six param-
eters are with medium sensitivity and the remaining six parameters are
with low sensitivity. Besides, all capacity-related parameters, e.g., elec-
trode surface area, A, electrode thickness, L™ and L™, active material
volume fraction, £ and ¢, and maximum electrode ionic concentra-
tion, ¢t and €5 max> A€ sensitive for the terminal voltage. As the cell

s,max
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Fig. 2. Summary of the parameter sensitivity related to cell terminal voltage.
The parameters are categorized into three groups, i.e., high sensitivity, medium
sensitivity and low sensitivity.
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being analyzed in this work is a high-energy cell, the electrolyte- and
separator-related parameters have relatively low sensitivity, which will
not be the same for the high-power cells. The sensitivity analysis results
in this work is also not universal for all cell materials and the same anal-
ysis should be carried out again when one of the three dominating fac-
tors changes. For example, the flat OCV curve in LFP and LTO cells will
reduce the sensitivity of the capacity-related parameters significantly.
Considering the differences in the sensitivity of the parameters, the in-
accuracy of the parameters with high sensitivity can have an influence
on the identification of the parameters with low sensitivity. Therefore,
a multi-step parameter identification approach based on the sensitivity
information is needed.

4. Data-driven parameter identification

As described in Section 3, the parameters of an EM for LIBs can be ac-
quired through experimental measurements or be derived from physical
principles based on experimental data. However, some measurements
are time- and cost-intensive on the one hand and are limited in terms
of accuracy on the other hand. Therefore, a novel metaheuristic algo-
rithm will be introduced for the first time as a data-driven parameter
identification method for EMs in this section.

4.1. Cuckoo search algorithm

The cuckoo search algorithm (CSA) is a metaheuristic algorithm that
has been developed by Yang et al. [57,58], inspired by the obligate
brood parasitism of cuckoo. Three idealized rules were defined to sim-
plify the breeding behavior of the cuckoo as an algorithm [59]: 1) Each
cuckoo can lay only one egg at each time and dump it in a randomly
selected nest. 2) The nests with high-quality eggs will be passed to the
next generation. 3) The number of host nests is not adjustable. A host
bird discovers an alien egg with the probability, pa € [0, 1]. If a cuckoo
egg is exposed, the host bird may either throw the egg away or abandon
its own nest and build a new one elsewhere.

According to the above rules, the CSA was implemented as the fol-
lowing simple representation for the global optimization. The flowchart
of the algorithm is illustrated in Fig. 3. As each egg in a nest denotes a
candidate solution, the task of CSA is to generate new and potentially
better solutions to replace the worse solutions in the current nest. The
quality or fitness of a solution is evaluated by the objective function,
which is related to the problem to be solved.

To update a new solution set according to the first rule, the global
random walk for exploring the search space is implemented through the
Lévy flight. For a given solution set, x! with i € [1, n], where n represents
the number of solution sets (nests), the next solution set xl’.+1 is generated
by

x?“ =xi+a ® Lévy(p),

1
where a = «; (x} - x} ) is the step size represented by a constant a, mul-
tiplied by the difference between the i’ solution set of the " generation,
x}, and the best solution so far, x} . The symbol ® denotes entry-wise
multiplications and Lévy(f) denotes the random walk step provided by
Lévy flight, which is drawn from Lévy distribution as follows,

Lévy(p) ~ ——,
lo]?

@

where the index § € (0,2], u ~ N(0,62) and v ~ N(0, 62) are drawn from
normal distribution with

{ (1 + pysin(L) }}9
Sl N o SO

any g 5
r(=F)p2>
where I'(-) is the standard Gamma function. The second rule is imple-
mented by taking the best solution set into the next iteration and the
last rule is implemented by replacing the worse solution sets with new

o, = =1, @)
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randomly generated solution sets with the probability of pa. This re-
placement using a local random walk can be mathematically defined as
[60]

“

where H(-) is a Heaviside function used to judge whether the host bird
ejects the egg and is replaced or remains in the nest, € € [0, 1] is a ran-
dom number drawn from a uniform distribution and « = e(x; - x;() de-
notes the step size, where x; and x| are two different randomly selected

x;“ =xl+a ® H(e - pa),

solutions at 1" generation.

To summarize, CSA is a population-based algorithm, in a way simi-
lar to the PSO. However, the solution update rule based on the elitism
used in CSA enables that the best solutions go to the next generation.
Furthermore, the randomization via Lévy flight is a random walk that is
characterized by a probability density function and has a power law tail.
Another advantage of CSA is that only one parameter, pa, needs to be
adjusted [61]. Therefore, although PSO and CSA on average can yield
similar effectiveness or solution quality, CSA is more computationally
efficient than PSO, which will be further validated for parameter iden-
tification in Section 6.1.

4.2. Multi-objective multi-step parameter identification framework

In this section, the framework for the data-driven parameter identi-
fication of the EM is provided. As depicted in Fig. 4a, the state-of-the-art
experimental parameter measurement process [8,9] for EMs is very ex-
pensive and time-consuming, as it consists of many experiments with ex-
pensive test benches and laboratory equipment. In this work, the param-
eters marked with blue will be identified with basic testing procedures in
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Fig. 4. (a) Schematic of experiment-based parameter identification. (b) Schematic of the multi-objective multi-step data-driven identification process, together with

the training process inspired by machine learning to overcome overfitting.

pre-identification experiments, e.g., quasi-open circuit voltage (qOCV)
test, electrochemical impedance spectroscopy (EIS), hybrid pulse power
characterization (HPPC) test, etc. The parameters marked with orange,
which are usually measured with post-mortem analysis by opening the
cell, will be identified with the data-driven method. Based on the sensi-
tivity analysis results, 20 parameters with high and medium sensitivity
were identified with the framework and the six parameters with low
sensitivity were set as nominal values within their boundaries, as the
variances of these parameters have little influence on the model perfor-
mance. Especially, a novel multi-objective fitness function considering
both voltage errors and capacity errors between electrodes is designed
for the first time to improve the identification accuracy of the capacity-
related parameters. Furthermore, a multi-step identification approach is
proposed to further improve the identification accuracy of parameters
with both high and medium sensitivity. Both the multi-objective and the
multi-step approach are developed based on the physical understanding
of the EMs and contribute to the fast and accurate identification of the
parameters while maintaining their physical meaning.

4.2.1. Multi-objective fitness function

To evaluate the quality of the parameter sets during the global opti-
mization process, fitness functions are needed and will have a significant
influence on the final identification performance. In this work, the first
term of the objective fitness function for parameter identification with
CSA is targeted at minimizing the mean-square error (MSE) between the
model-simulated voltage, V, and the experimentally measured voltage,
V, for a given input current as follows,

N!
FF, = 2= Y 00 - V07, ®)
1
where N, is the number of the data points of the dataset. With this fit-
ness term, the global optimization algorithm aims to find the optimal
parameter values by reducing the errors between the model output and
the measurement. Considering that all the capacity-related parameters
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are with high sensitivity and influence the voltage trajectories strongly,
a second fitness term is designed for the first time to constrain the error
between the capacity of both electrodes, i.e., C* and C~. The capacity
error between cathode and anode can be calculated with the identified
capacity-related parameters as follows,

rr o A 0 AL P )
o 3600 3600 '
where 05’, 6;’00, 95 and 91‘00 are stoichiometry values indicating the usage

of cathode and anode, which can be identified with the data from the
qOCV test of the full cell and electrodes. It can be noticed that we have
not used the absolute error of the electrode capacity because the cell ca-
pacity is hard to be measured accurately, even under a very low C-rate.
Instead, the relative capacity error reflecting the difference between the
capacity of the cathode and the anode is considered. With F F, the iden-
tification accuracy of the capacity-related parameters can be improved
significantly. In summary, the total objective fitness function consists of
two fitness terms considering both voltage error and capacity error as
follows,
Np
FFy = ), wy FF, +w FF,

n=1

(O]

where N, is the number of the input profiles when multiple profiles
are used to identify the parameters, wy, and wc are weights for the
corresponding fitness terms. The choice of the weights has a significant
influence on the identification results, which can be determined based
on the value of the error terms so that every term is on the same order
of magnitude during the optimization process.

4.2.2. Multi-step parameter identification

The process of parameter identification using CSA starts by applying
the current profiles experimentally to the LIB cell or to the numerical
model. The input data thus consists of the current profiles and the re-
sulting measured or simulated terminal voltage. In the beginning, ran-
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domized nests are initialized in the CSA, where each nest represents a
random set of parameters within the value boundaries. For each nest,
the voltage resulting from the current profile and the parameters of the
individual nests is simulated and evaluated by the objective fitness func-
tion. Based on the fitness values, the nests are selected for whether up-
dating or maintaining by the updating rules. After that, the new nests
are re-evaluated by the model. This process is repeated until it reaches
the maximum generation. Finally, the identified parameter values are
acquired from the nest with minimal fitness.

Considering that the variances of the parameters with high sensi-
tivity have a much larger influence on the voltage compared with pa-
rameters with low sensitivity, the identifiability of the parameters with
low sensitivity will be hidden when they are varying with other high-
sensitivity parameters at the same time. To increase the identification
accuracy of the capacity-related parameters, which have high sensitiv-
ity, and reduce the influence of the identification errors of these param-
eters on the identification accuracy of the other parameters with rela-
tively low sensitivity, a multi-step parameter identification approach
is designed in this work. As shown in Fig. 4b, the so-called multi-
step multi-objective cuckoo search algorithm (MMCSA) is divided into
two identification steps. In the first step, all the parameters are identi-
fied with the multi-objective function, FF,,. In the second step, seven
capacity-related parameters are set to be constant values, which are
identified from the first step to reduce their influence on the identifi-
cation of the low-sensitivity parameters. All the other parameters are
identified further with the fitness function, FF,, as the capacity error
fitness term will not change anymore.

4.2.3. Identification process overcoming overfitting

One of the challenges of the data-driven methods is the occurrence
of overfitting, which is triggered by two main reasons, especially when
using a small dataset: first, the EM is not able to model the dynamics of
the LIBs with 100% accuracy; second, the measurement data also con-
tains errors. Therefore, parameter identification with the metaheuristic
algorithms may lead to overfitting of the parameters when only one
input profile is used, which means the further reduction of the fitness
error does not denote that the identified parameters are more accurate.
However, when the number of input profiles increases, the computation
burden will also increase significantly, in particular when the input pro-
file is highly dynamic with a high sampling rate. Inspired by the train-
ing process of machine learning algorithms [62], a novel identification
process to overcome overfitting is proposed in this work, as shown in
Fig. 4b. The experimental data is divided into three data groups, i.e.,
training data, validation data and test data. In each identification step,
two load profiles with low and high dynamics, e.g., discharging with
constant current and multi-pulse test profile, are used as the training
dataset to guide the algorithm to reduce the voltage and capacity error
for 500 epochs. At the end of each training epoch, the best performance
parameter set will be validated with the validation data, i.e., a driv-
ing cycle profile with high dynamics. The minimum fitness error of the
validation data in the first identification step will be used as the stop
criterion and the parameter set will be used as the starting parameter
set in the second identification step. Similarly, the parameters will be
identified further with the training dataset in the second step for another
500 epochs and the final stop criterion is based on the minimum fitness
error with the validation dataset and the related parameter set is the
final identification result. In the end, the identified parameters will be
further tested with new load profiles, i.e., test data, for the evaluation
of the identification accuracy.

5. Experimental

The battery cell we used in the experiments is a commercial high-
energy NMC pouch cell of type SLPB 75106100 manufactured by Kokam
Co. Ltd. As summarized in Table 3, the battery has a nominal voltage of
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Table 3
Cell specifications.

Category Specification
Manufacturer Kokam

Type SLPB 75106100
Nominal voltage 3.7V

Nominal capacity 7.5 Ah

Cut-off voltages 27V-42V

Table 4

Identification results of the stoi-
chiometry parameters for the OCV
using the method in Ref. [8] and

CSA.
Ref. [8]  CSA
o3, 0.932 0.915
O 0.260 0.254
0y, 0 0.008
oo 0.8292  0.855
OCVRMSE  19.1mV 7.4 mV

3.7 V and a nominal capacity of 7.5 Ah. The typical operating voltage
range of the battery is from 2.7 V to 4.2 V.

5.1. Pre-identification experiments

Before the data-driven identification process, parameters from the
polynomial functions of electrolyte conductivity and open circuit po-
tential (OCP) and the stoichiometry values of the OCV were identified
with experimental data. The relationship between the electrolyte con-
ductivity and electrolyte concentration was measured under nitrogen
atmosphere by applying an alternating current and the measurement
data at 23°C [8] was fitted with a third-order polynomial using CSA as
follows,

6,=0.1422+1.877-1073 - ¢, — 1.3755- 107 - ¢, +2.8923 - 10710 . ¢ 3, (8)

where the unit for ¢, and ¢, are S/m and mol /m>, respectively. The units
for the numerical parameters are different from each other so that the
units of the two sides of Eq. 8 are the same.

The OCP of both cathode and anode were measured by the coin half
cells with the same electrode materials originated from the Kokam cell
and the measurement data was fitted with the nonlinear functions with
the CSA as follows,

U+ =2.11-107 + 110.52(1 — 6,) — 1361.72(1 — 6,)> + 9188.4(1 - 6,)°
~37148.0(1 — 6,)* +94012(1 — 6,)° — 150327(1 — 6,)0 + 147704.4(1 — 6,
~81484.34(1 — 6,)° + 19336.88(1 — 6,)° — 0.1~ 7782414"

C))

U~ = 0.1379 + 0.7526e~35616, — 0.0153tanh( ""‘g'f;ﬁ“

—0.1212tanh(%) — 0.1291tanh(“=252Y _ 0.10991ank(

. 0.1584
—0.1083tanh( 9"0‘ ‘1"5“329“") — 0.1543tanh( 22298y 4 0.7192tanh(

0.0985

0,-0.3173
) = 0.1312tanh(%2 )

0,-0.3976 )

0.1596
0,-023684 )

0.1573

10)

where Ut and U~ are the OCP of the cathode and anode, respectively,
0 = ¢4y /s max TEPresents the lithiation level of the electrode. The stoi-
chiometry parameters, 03% s 9;'00% , 6y, and 6, ., dedicate the lithiation
of cathode and anode at 0% and 100% SOC. To further determine the
stoichiometry values, the OCV of the full cell was measured under con-
stant charging and discharging with C/20. As shown in Fig. 5, these four
parameters were identified by minimizing the error between the mea-
sured OCV and simulated OCV with the half-cell OCPs using CSA. The
identified values of the stoichiometry parameters are also summarized
in Table 4. Compared with the cell balancing method in Ref. [8], the
root-mean-sqaure error (RMSE) between the measured OCV and fitted
OCV decreases from 19.1 mV to 7.4 mV, demonstrating the high iden-
tification accuracy with the CSA. It is also worth mentioning that, the
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Fig. 5. (a) Fitting results of the cathode OCP. (b) Fitting results of the anode OCP. (c) Cell balancing results to determine the stochiometry parameters
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Table 5

List of the experimental tests for data generation.
Load profile Data group ~ Dynamic  Duration
2C discharge Training low 39 min
Multi-pulse test ~ Training high 420 min
WLTP 1 Test high 257 min
WLTP 2 Validation high 463 min
WLTP 3 Test high 931 min

four stoichiometry parameters can also be identified together with the
other physical parameters with the proposed data-driven method.

5.2. Experiments for data generation

To generate the dataset for the data-driven identification of P2D
model parameters, a battery cell is connected with the test bench, which
consists of a Digatron battery tester (MCFT 20-5-60 ME), a control PC, a
Binder thermal chamber (Binder MK54), and a data logger. During the
experiments, the battery was placed in the thermal chamber to remain
at a constant environment temperature of 25°C. The real-time measure-
ments during tests are the input current, /, and terminal voltage, V.
Furthermore, five experiments with different load profiles were carried
out to generate the data for parameter identification. The test details and
the categorization of the load profiles for the experiments are summa-
rized in Table 5. Considering the short simulation time and variances
in load dynamics, the measurement data under two standard testing

(c)
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profile, constant-current discharging test and multi-pulse test, were se-
lected as the training data. As the aim of this work is developing a
fast data-driven parameter identification approach for the application
of EMs under real-world operating conditions with high dynamics, the
Worldwide Harmonized Light-Duty Vehicles Test Procedure (WLTP) 2
test data was chosen as validation data to determine the stop criterion in
the identification process. WLTP 1 test data and WLTP 3 test data were
selected as the test dataset to evaluate the identification performance
at the end of the data-driven identification process. The WLTP profiles
consist of charging and discharging current pulses with various C-rates
under various time duration. Compared with the constant-current dis-
charging profile where the OCV is the dominating factor, the real-world
driving cycles are more challenging for the validation of the parameter
identification as both capacity-related parameters and other parameters
need to be accurate enough to ensure a good model performance.
Although the sampling time used in the data logging within the ex-
perimental tests is 0.1 s, 1 s is chosen as the sampling time in the simula-
tion to reduce the total computational time for parameter identification.
The whole dataset used in this work has 126600 data points with 1 s as
the sampling time. It is worth mentioning that the experimental tests
summarized in Table 5 are only one example of the possible tests for
data generation and other tests can also be chosen. As one of the high-
lights in this work is to avoid the overfitting problem with the machine
learning-inspired identification process when a small dataset is avail-
able, only two profiles are used as training profiles. A larger number of
training profiles can also be used to further increase the identification
accuracy but with a significant increase of the computational time. Al-



W. Li, I. Demir, D. Cao et al.

though sparser data can also be chosen, it is strongly suggested that at
least two datasets with different dynamics should be used in the training
process, one dataset for the validation process and one dataset for the
test process, to avoid the overfitting of the parameters. Incomplete or
fragmented data can also be used if the dataset can cover the main SOC
range and with different load dynamics, which are very common in the
real operation condition.

6. Results and discussion

In this section, the proposed data-driven parameter identification
method is validated not only with a virtual cell with known parame-
ters numerically but also with a commercial cell experimentally. Differ-
ent benchmarks considering algorithm, fitness function and identifica-
tion framework are used to highlight the outstanding performance of
the proposed method. Last but not least, the model performance with
the experimental identification method is also provided, discussed and
compared with the model performance with data-driven identified pa-
rameters.

6.1. Numerical validation

As the real values of the P2D model parameters are not accessible
and even the invasive experimental measurements by opening the cell
cannot guarantee the identification with 100% accuracy, we first val-
idate the data-driven parameter identification framework numerically
with a virtual cell with known parameters. The virtual cell consists of
the same P2D model used in the identification process, as introduced in
Section 2, and the real values of the parameters were chosen randomly
within the predefined parameter boundaries, as summarized in Table 2.
The virtual cell was tested under the load profiles, as listed in Table 5,
to generate the training dataset, validation dataset and test dataset. The
current and simulated voltage of the virtual cell were used as the input
data for the data-driven parameter identification with the MMCSA and
other algorithm benchmarks.

6.1.1. Comparative study with particle swarm optimization

As the PSO has already shown notable advantages compared with
GA in parameter identification for P2D models in the literature, PSO
is used as a benchmark in this work to highlight the fast convergence
and high identification efficiency of the CSA. To compare the algorithm
performance fairly, the fitness function in Eq. 5 for both PSO and CSA
was set to be the same and the hyperparameters of the PSO and CSA
were also tuned with trial-and-error procedures to guarantee the best
performance of each algorithm.

Due to the algorithm difference, the parameter sets are updated and
simulated in each identification iteration once with PSO but twice with
CSA. Therefore, the simulation number rather than the iteration num-
ber can represent the real computation time of the algorithm, which
is then used as the index for a fair comparison. The development of
the fitness values for 2000 simulations during the parameter identifi-
cation with PSO and CSA are shown in Fig. 6. The convergence speed
of the CSA is much faster than that of the PSO. Furthermore, the fit-
ness RMSE of the PSO remains almost unchanged after 500 simulations,
while the fitness RMSE of the CSA continues decreasing, indicating the
higher ability of the CSA in finding the global optimization point in such
a complex nonlinear system compared with the PSO. The final fitness
RMSE of the parameter sets under PSO and CSA is 0.721 mV and 0.215
mV, respectively, indicating that CSA can identify the parameters more
efficiently. The higher convergence speed and better effectiveness in
parameter identification of nonlinear systems with the CSA compared
to PSO are mainly due to the following two reasons. First, there are
fewer hyperparameters in CSA that need to be optimized to achieve a
high performance of the algorithm, making it easier to select the hy-
perparameters. Second, the combination of the local optimization by
the random walk and the global optimization by the random steps via
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Table 6
Summary of the parameter identification results with CSA, MCSA and MMCSA.
Parameter Unit Virtual value CSA MCSA MMCSA
APE [%] APE [%] APE [%]

High sensitivity

L pm 54.6 11.07 6.62 6.65

L~ pm 60.6 12.08 7.87 13.67

max mol m™ 50778 3.47 2.57 2.07
mol m™ 32095 3.58 3.43 3.71

el - 0.4322 9.41 7.33 7.09

€] - 0.4815 8.11 4.19 8.64

A m? 0.3828 1.22 0.98 0.82

Kt m>3s~'mol™  6.82x 107! 28.09 30.28 23.54

K~ m>s'mol™®  9.19x 1071 69.77 61.24 21.65

R; pm 7.08 22.18 29.51 20.16

R; pm 8.71 17.85 13.39 14.66

D} m?/s 5.04x 10714 40.66 56.76 43.68

Dy m?/s 298 x 10714 46.03 29.32 32.71

R, Qm? 0.0081 27.82 20.09 9.98

Medium sensitivity

er - 0.3867 10.61 21.75 16.03

£ - 0.4373 19.55 13.81 4.64

D, m?/s 1.77 x 10710 16.77 27.91 10.83

o mol m~? 1133 6.75 4.79 5.95

LS pm 23.1 29.73 33.34 23.48

tﬂ 0.2744 20.95 23.33 10.59

ct Ah 8.138 0.038 0.005 0.017

(o Ah 8.138 0.118 0.004 0.016

Lévy flights is a very efficient method to search the global optimization
solution in the search space. The comparison results with the PSO fur-
ther highlights the high convergence speed and efficiency of the CSA in
parameter identification for the P2D model.

6.1.2. Validation of the multi-objective multi-step approach

To verify the improvement of the parameter identification accu-
racy with the multi-objective multi-step approach, two identification
approaches based on CSA were further implemented as benchmarks.
The first benchmark algorithm is the CSA with Eq. 5 as the fitness func-
tion, where only the voltage error between the measurement and model
output is considered, which corresponds to the approach in most of the
literature. The second benchmark algorithm is the multi-objective CSA
(MCSA) with Eq. 7 as fitness function but without the second identifica-
tion step to further improve the identification accuracy of the parame-
ters with medium sensitivity.

The final parameter identification results with CSA, MCSA and MM-
CSA, are summarized in Table 6, where the absolute percentage errors
(APEs) of the parameters are highlighted for all the algorithms. It is clear
that most of the parameters with high sensitivity can be identified with
better accuracy with MCSA compared to CSA, which is due to the multi-
objective function, which further reduces the identification errors of the
capacity-related parameters. Furthermore, most of the parameters with
medium sensitivity can be identified with higher accuracy with MM-
CSA compared with MCSA, benefiting from the second identification
step where some of the high-sensitivity parameters remain constant and
therefore reduce their negative influence on the identification of the
other parameters. As a result of the fitness term in Eq. 6, MCSA and MM-
CSA not only show much lower capacity identification errors for both
cathode and anode, compared with CSA but also approach to the same
value, which is critical for reproducing the cell dynamics. In Table 7, the
mean APE of all the high-sensitivity parameters, M PE;, the mean APE
of all the medium-sensitivity parameters, M PE,,, the mean APE of all
the parameters, M PE,,,, and the voltage RMSE of all the algorithms
are summarized. It can be seen that MMCSA has achieved the lowest
errors in all the performance indexes, which further highlights the out-
standing ability of the proposed algorithm in parameter identification
for the P2D model.
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Fig. 6. Numerical validation results. (a) The fitness value, RMSE, of the parameter identification using PSO and CSA for the first 2000 simulations. Mean percentage
error of (b) capacity-related parameters and (c) other parameters identified with CSA, MCSA and MMCSA within ten numerical identifications. The dash lines

represent the mean value of the APEs.

Table 7
Comparision results with CSA, MCSA and MMCSA.

Parameter Unit CSA MCSA  MMCSA
MPEy % 21.52  19.54 14.93
MPE,, % 17.39  20.82 11.92
MPE,,, % 20.28 19.9 14.03
Voltage RMSE  mV 0.095 0.104 0.068

Considering the randomness of the metaheuristic algorithms, ten
simulations were performed with CSA, MCSA and MMCSA to further
compare their performance and mitigate the influence of the uncertainty
of each simulation. In Fig. 6b, the APE of the capacity-related parame-
ters are shown for CSA and MCSA. As expected, MCSA has reduced the
mean APE of the capacity-related parameters by 32.9% compared with
CSA. The APE of all the other parameters, together with the MPEs for
CSA, MCSA and MMCSA, are further depicted in Fig. 6c¢. For the other
parameters, the advantage of the MMCSA algorithm is highly noticeable.
As CSA and MCSA don’t have a second identification step, the MPEs of
the other parameters are much higher than those of the MMCSA. MM-
CSA further reduces the identification error of the other parameters by
34.9%, which leads to a lower voltage error and demonstrates the sig-
nificance of the multi-step identification approach.
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6.2. Experimental validation

After the numerical evaluation of the performance of the data-driven
parameter identification algorithms, the MMCSA was used to identify
the parameters of the Kokam cell, as described in Section 5, based on
the measurement data. For this purpose, the framework described in
Section 4.2 was used and the test data with different load profiles were
divided into three groups, as summarized in Table 5. The data of the 2C
discharge and the multi-pulse test were used as training data. The data
of the WLTP 2 was used as validation data, whereas WLTP 1 and WLTP
3 were used as test data.

For the data-driven parameter identification, 500 iterations each
were performed for the first and second steps. For each iteration, 25
nests were considered. The simulations were executed with an Intel
Xeon Platinum 8160 processor with 26 cores and both steps of the MM-
CSA took about 15 hours. As introduced in Section 4.2, the weight tuning
in the multi-objective fitness function is a nontrivial task and needs to
balance the convergence of each fitness term considering their magni-
tudes. During the simulations, it was found that a stronger weighting
of the 2C discharge profile in both steps led to significantly lower over-
fitting of the training data and thus continuously reduced the voltage
MSE of the validation profile with the iterations. In contrast, a stronger
weighting of the pulse profile resulted in significant overfitting, which is
shown by the high voltage error under the WLTP 2 profile. The simula-
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Fig.7. Experimental validation results. Model performance with the training dataset (a) 2C discharge and (b) multi-pulse test. Model performance with the validation
dataset (¢) WLTP 2, test dataset (d) WLTP 1 and (e) WLTP 3. (f) The RMSEs of the P2D model in all the datasets.

tions showed that a weighting of w),|, = 0.8 for the 2C profile, wy, = 0.2
for the pulse profile in both steps and additionally w, = 0.0005 for the
capacity in the first step provided the best results.

Fig. 7 shows the results of the data-driven parameter identification
with MMCSA under different load profiles with both low and high dy-
namics. It can be seen that the data-driven parameter identification with
MMCSA provides a parameter set that performs well with the training
data as well as with the validation data and test data. While the RMSEs
of the training profiles are slightly above 10 mV, the validation profiles
with 11.4 mV RMSE and the test profiles with less than 13 mV RMSEs
both achieve a good fitting result over the whole profile, demonstrating
the high generalization ability of the multi-objective multi-step identi-
fication approach. The relatively larger voltage errors at low SOC range
and high currents are mainly due to the OCV fitting error, model inac-
curacies and measurement errors.

To further compare the identification accuracy of the proposed data-
driven method with the state-of-the-art experimental method, the pa-
rameters determined for the same cell with an invasive experimental
method by opening the cell in the previous work of our lab [8,9] were
used as a benchmark. The parameter values of the experimental and
data-driven method are summarized in Table 8. Although several param-
eters have shown differences in two parameter sets, the magnitudes of
the identified parameters are the same as those of the measured param-
eters, which highlights the physical meaning of the identified parame-
ters. As the measurement of the parameters with invasive experimental
methods cannot avoid measurement errors, the variances between the
two parameter set in Table 8 cannot be used as the metric to evaluate
the performance of the proposed data-driven method. The electrode ca-

Table 8

Summary of the values of the identified parameters using the experimen-
tal measurement and the MMCSA

Parameter Sensitivity Unit Measurement MMCSA
L* High um 54.5 61.04

L~ High um 73.7 66.39

€t High mol m™ 48580 48839
e High mol m™ 31920 31410

eF High - 0.4083 0.3661

€ High - 0.3724 0.4090

A High m? 0.3949 0.3887

K* High m>5s~Imol™®®  3.0x 107! 4.4x1071
K~ High m>5s~ 'mol™®  11.1x 107! 3.5% 107"
R High um 6.49 6.53

RS High um 13.7 8.55

D} High m2/s 9.00 x 10714 9.49 x 10714
D; High m?/s 10.00x 107 9.97x 107
R, High Qm® 0 0.0001

eF Medium - 0.296 0.3770

e Medium - 0.329 0.2301

D, Medium m?/s 2.40 x 10710 6.82x 10710
Ceo Medium mol m™~* 1000 1137

L’ Medium pm 19.0 11.37

9 Medium - 0.2600 0.2300

ct - Ah 7.6886 7.5202

c- - Ah 7.6144 7.5236

pacities calculated with the parameters identified by the MMCSA are
7.5202 Ah and 7.5236 Ah for cathode and anode, respectively, which
shows a high consistency and also corresponds to the cell capacity spec-
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Fig. 8. Comparative study between the experimental and data-driven parameter identifications. Performance of the model under 2C discharge with the parameters
identified with (a) the invasive experimental method and (b) the data-driven method. (c) Error distributions of the invasive experimental and data-driven parameter
identification results under 2C discharge. Performance of the model under WLTP 1 with the parameters identified with (d) the invasive experimental method and
(e) the data-driven method. (f) Error distributions of the invasive experimental and data-driven parameter identification results under WLTP 1.

Table 9
Comparison of the voltage errors and capacity error of the experimental
identification method and the data-driven identification method with
MMCSA.

2C discharge WLTP 1

Experimental ~ MMCSA Experimental ~ MMCSA
Voltage RMSE ~ 50.1 mV 9 mV 31.4 mV 12.7 mV
Voltage MAE 45.7 mV 6.4 mV 24.7 mV 10.6 mV
A capacity 74.2 mAh 3.4mAh  74.2 mAh 3.4 mAh

ified by the manufacturer. In contrast, the capacity of the cathode and
anode calculated with the parameters measured by the invasive exper-
imental method has shown a much larger difference, which also differs
from the capacity value in the cell specifications.

The performance of the experimental and data-driven parameter
identification methods are further compared under a low dynamic load
profile and a high dynamic load profile, as shown in Fig. 8, and the
voltage and capacity errors are also summarized in Table 9. It can be
observed that the data-driven method performed much better than the
invasive experimental method considering the voltage error between the
measurement and the model output, which is contributed by the high
accuracy of both the capacity-related and impedance-related parame-
ters. The voltage errors of the model with the experimentally measured
parameters, especially in the lower SOC range, are significantly higher
than those with the data-driven identified parameters in both constant-
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current discharging and WLTP profiles. While the voltage MAEs of the
data-driven method under 2C discharge and WLTP 1 are 6.4 mV and
10.6 mV, respectively, the voltage MAEs of the experimental identifica-
tion method are 45.7 mV and 24.7 mV for the same profiles. The capacity
error of the data-driven method is 3.4 mAh, which is only 4.6% of that of
the experimental identification. Therefore, it can be concluded that the
data-driven parameter identification approach with MMCSA not only
saves time and cost of the whole identification process but also pro-
vides P2D model parameters that provide a significantly lower model
error compared with state-of-the-art invasive experimental identifica-
tion methods by opening the cell. The high uncertainty of the capacity-
related parameters may lead to over-charging or over-discharging of the
battery cells with a wrong SOC estimation. Furthermore, the identifica-
tion errors in impedance-related parameters can not only lead to errors
in state estimation but also increase the error in power prediction of
LIBs, which may affect the energy management [63-66] or cause safety
problems.

6.3. Future work and applications

In the future, we aim to expand the scope of this work in various
directions, one of which is expanding the identification ability of the
framework for electrochemical-thermal models by further considering
the identification of thermal parameters. A major step would be ana-
lyzing the sensitivity of the thermal and physical parameters to voltage
and temperature measurement with a variance-based global sensitivity
analysis method, further increasing the sensitivity analysis accuracy. To
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identify the parameters, which are valid for a large operating tempera-
ture range, the battery testing procedures need to be expanded for tests
under various temperatures.

Another key expansion to the framework is investigating identifica-
tion methods for the aging-related parameters of EMs under operation.
First, electrode level aging mechanisms can be understood by identify-
ing the parameters for each electrode and the contributions of loss of
lithium inventory (LLI) and loss of active material (LAM) to battery ag-
ing can be clarified by identifying the stoichiometry parameters of the
cell balancing online. The updated model parameters can be sent to the
battery systems in EVs by Over-the-Air-Update technology [67], guar-
anteeing the reliability of the EM-based battery management functions,
such as fast charging, over the whole lifetime of EVs.

7. Conclusions

This work aims to develop a parameter identification framework that
is suitable for fast and accurate identification of physical parameters of
electrochemical models under real-world operation. The proposed data-
driven parameter identification framework not only shows significant
performance improvement compared with the other data-driven meth-
ods but also shows a higher identification accuracy compared with the
state-of-the-art experimental identification method. Several highlights
of the framework are given below.

e Identifies 26 parameters of an electrochemical model only based
on voltage and current measurement and overcomes the overfitting
problem by a novel identification process inspired by the training
process in machine learning.

Multi-objective fitness functions are considered, improving the
identification accuracy of capacity-related parameters significantly,
which is essential for a low voltage error between the model and the
cell.

Multi-step identification procedure reduces the negative influences
of the identification of the high-sensitivity parameters on the iden-
tification of the low-sensitivity parameters, therefore, increases the
identifiability and reduces the identification errors.

e Cuckoo search algorithm identifies the parameters more accurately
and with a faster convergence speed compared with other meta-
heuristic algorithms, e.g., particle swarm optimization.

Compared with the experimental identification method, the pro-
posed data-driven approach reduces 82.0% and 59.6% of the voltage
error under low and high load dynamics, respectively, and reduces
95.4% capacity error between two electrodes.

At the time of review for this work, no comparable work was found
in the same domain, which implements a cuckoo search algorithm under
a multi-objective multi-step framework for the identification of parame-
ters for lithium-ion electrochemical models. The validation of the iden-
tification framework not only with a virtual cell numerically and with a
commercial cell experimentally are conducted to show the viability of
acceptance of data-driven methods in future battery research.

Declaration of Competing Interest
The authors declare that they have no known competing financial

interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data Availability
Data will be made available on request.
CRediT authorship contribution statement

Weihan Li: Conceptualization, Methodology, Investigation, Soft-
ware, Validation, Visualization, Writing — review & editing. Iskender

Energy Storage Materials 44 (2022) 557-571

Demir: Methodology, Investigation, Software, Validation, Writing —
original draft, Visualization. Decheng Cao: Methodology, Investigation,
Software, Validation. Dominik Jost: Methodology, Investigation, Soft-
ware, Validation. Florian Ringbeck: Investigation, Writing — review
& editing. Mark Junker: Investigation, Writing — review & editing.
Dirk Uwe Sauer: Conceptualization, Writing — review & editing, Su-
pervision, Funding acquisition.

Acknowledgment

This work has received funding from the European Union’s Horizon
2020 research and innovation program under the grant “Electric Vehicle
Enhanced Range, Lifetime And Safety Through INGenious battery man-
agement” (EVERLASTING-713771). Part of the work was done within
the research project “Model2life” (03XP0334) funded by the German
Federal Ministry of Education and Research (BMBF). We would like to
thank D. Luder for the review and the discussions and C. Rahe for the
photos of the lab devices.

References

[1] R. Schmuch, R. Wagner, G. Horpel, T. Placke, M. Winter, Performance and cost of
materials for lithium-based rechargeable automotive batteries, Nature Energy 3 (4)
(2018) 267-278, doi:10.1038/541560-018-0107-2.

[2] W. Li, Y. Fan, F. Ringbeck, D. Jost, X. Han, M. Ouyang, D.U. Sauer, Elec-
trochemical model-based state estimation for lithium-ion batteries with adap-
tive unscented Kalman filter, Journal of Power Sources 476 (2020) 228534,
doi:10.1016/j.jpowsour.2020.228534.

[3] W. Li, D.W. Limoge, J. Zhang, D.U. Sauer, A.M. Annaswamy, Estimation of poten-
tials in lithium-ion batteries using machine learning models, IEEE Transactions on
Control Systems Technology (2021) 1-16, doi:10.1109/TCST.2021.3071643.

[4] W.Li, J. Zhang, F. Ringbeck, D. Jost, L. Zhang, Z. Wei, D.U. Sauer, Physics-informed
neural networks for electrode-level state estimation in lithium-ion batteries, Journal
of Power Sources 506 (5) (2021) 230034, doi:10.1016/j.jpowsour.2021.230034.

[5] J. Li, D. Wang, L. Deng, Z. Cui, C. Lyu, L. Wang, M. Pecht, Aging modes anal-
ysis and physical parameter identification based on a simplified electrochemical
model for lithium-ion batteries, Journal of Energy Storage 31 (6) (2020) 101538,
doi:10.1016/j.est.2020.101538.

[6] W. Li, Y. Fan, F. Ringbeck, D. Jost, D.U. Sauer, Unlocking electrochemical model-

based online power prediction for lithium-ion batteries via Gaussian process regres-

sion, Applied Energy 306 (2021) 118114, doi:10.1016/j.apenergy.2021.118114.

F. Ringbeck, M. Garbade, D.U. Sauer, Uncertainty-aware state estimation for elec-

trochemical model-based fast charging control of lithium-ion batteries, Journal of

Power Sources 470 (2020) 228221, doi:10.1016/j.jpowsour.2020.228221.

[8] M. Ecker, T.K.D. Tran, P. Dechent, S. Kébitz, A. Warnecke, D.U. Sauer, Parameter-

ization of a physico-chemical model of a lithium-ion battery: I. determination of

parameters, Journal of The Electrochemical Society 162 (9) (2015) A1836-A1848,
doi:10.1149/2.0551509jes.

M. Ecker, S. Kébitz, I. Laresgoiti, D.U. Sauer, Parameterization of a physico-chemical

model of a lithium-ion battery: II. model validation, Journal of The Electrochemical

Society 162 (9) (2015) A1849-A1857, doi:10.1149/2.0541509jes.

[10] J. Schmalstieg, C. Rahe, M. Ecker, D.U. Sauer, Full cell parameterization of a high-
power lithium-ion battery for a physico-chemical model: Part I. Physical and elec-
trochemical parameters, Journal of The Electrochemical Society 165 (16) (2018)
A3799-A3810, doi:10.1149/2.0321816jes.

[11] J. Schmalstieg, D.U. Sauer, Full cell parameterization of a high-power lithium-
ion battery for a physico-chemical model: Part II. Thermal parameters and val-
idation, Journal of The Electrochemical Society 165 (16) (2018) A3811-A3819,
doi:10.1149/2.0331816jes.

[12] A. Sharma, H.K. Fathy, Fisher identifiability analysis for a periodically-
excited equivalent-circuit lithium-ion battery model, in: American Con-
trol Conference (ACC), 2014, IEEE, Piscataway, NJ, 2014, pp. 274-280,
doi:10.1109/ACC.2014.6859360.

[13] V. Boovaragavan, S. Harinipriya, V.R. Subramanian, Towards real-time (mil-
liseconds) parameter estimation of lithium-ion batteries using reformulated
physics-based models, Journal of Power Sources 183 (1) (2008) 361-365,
doi:10.1016/j.jpowsour.2008.04.077.

[14] V. Ramadesigan, K. Chen, N.A. Burns, V. Boovaragavan, R.D. Braatz, V.R. Subrama-
nian, Parameter estimation and capacity fade analysis of lithium-ion batteries using
reformulated models, Journal of The Electrochemical Society 158 (9) (2011) A1048,
doi:10.1149/1.3609926.

[15] S. Santhanagopalan, Q. Guo, R.E. White, Parameter estimation and model discrimi-
nation for a lithium-ion cell, Journal of The Electrochemical Society 154 (3) (2007)
A198, doi:10.1149/1.2422896.

[16] Z.Deng, H. Deng, L. Yang, Y. Cai, X. Zhao, Implementation of reduced-order physics-
based model and multi-parameters identification strategy for lithium-ion battery,
Energy 138 (2017) 509-519, doi:10.1016/j.energy.2017.07.069.

[17] A.P. Schmidt, M. Bitzer, A.W. Imre, L. Guzzella, Experiment-driven electrochemical
modeling and systematic parameterization for a lithium-ion battery cell, Journal of
Power Sources 195 (15) (2010) 5071-5080, doi:10.1016/j.jpowsour.2010.02.029.

[7

—

[9

—


https://doi.org/10.1038/s41560-018-0107-2
https://doi.org/10.1016/j.jpowsour.2020.228534
https://doi.org/10.1109/TCST.2021.3071643
https://doi.org/10.1016/j.jpowsour.2021.230034
https://doi.org/10.1016/j.est.2020.101538
https://doi.org/10.1016/j.apenergy.2021.118114
https://doi.org/10.1016/j.jpowsour.2020.228221
https://doi.org/10.1149/2.0551509jes
https://doi.org/10.1149/2.0541509jes
https://doi.org/10.1149/2.0321816jes
https://doi.org/10.1149/2.0331816jes
https://doi.org/10.1109/ACC.2014.6859360
https://doi.org/10.1016/j.jpowsour.2008.04.077
https://doi.org/10.1149/1.3609926
https://doi.org/10.1149/1.2422896
https://doi.org/10.1016/j.energy.2017.07.069
https://doi.org/10.1016/j.jpowsour.2010.02.029

W. Li, I. Demir, D. Cao et al.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Meta-Heuristic and Evolutionary Algorithms for Engineering Optimization,
O. Bozorg-Haddad, M. Solgi, H.A. Lodiciga (Eds.), John Wiley & Sons, Inc, Hobo-
ken, NJ, USA, 2017, doi:10.1002/9781119387053.

J.C. Forman, S.J. Moura, J.L. Stein, H.K. Fathy, Genetic identification and
fisher identifiability analysis of the doyle—fuller-newman model from experimen-
tal cycling of a lifepo4 cell, Journal of Power Sources 210 (2012) 263-275,
doi:10.1016/j.jpowsour.2012.03.009.

A. Jokar, B. Rajabloo, M. Désilets, M. Lacroix, An inverse method for estimating the
electrochemical parameters of lithium-ion batteries, Journal of The Electrochemical
Society 163 (14) (2016) A2876-A2886, doi:10.1149/2.0191614jes.

L. Zhang, C. Lyu, L. Wang, J. Zheng, W. Luo, K. Ma, Parallelized genetic identifi-
cation of the thermal-electrochemical model for lithium-ion battery, Advances in
Mechanical Engineering 5 (2013) 754653, doi:10.1155/2013/754653.

L. Zhang, C. Lyu, G. Hinds, L. Wang, W. Luo, J. Zheng, K. Ma, Parameter sen-
sitivity analysis of cylindrical LiFePO4 battery performance using multi-physics
modeling, Journal of The Electrochemical Society 161 (5) (2014) A762-A776,
doi:10.1149/2.048405jes.

J. Li, L. Zou, F. Tian, X. Dong, Z. Zou, H. Yang, Parameter identification of
lithium-ion batteries model to predict discharge behaviors using heuristic algo-
rithm, Journal of The Electrochemical Society 163 (8) (2016) A1646-A1652,
doi:10.1149/2.0861608jes.

H. Pang, L. Mou, L. Guo, F. Zhang, Parameter identification and systematic validation
of an enhanced single-particle model with aging degradation physics for li-ion batter-
ies, Electrochimica Acta 307 (2019) 474-487, doi:10.1016/j.electacta.2019.03.199.
J. Li, D. Wang, L. Deng, Z. Cui, C. Lyu, L. Wang, M. Pecht, Aging modes anal-
ysis and physical parameter identification based on a simplified electrochemical
model for lithium-ion batteries, Journal of Energy Storage 31 (2020) 101538,
doi:10.1016/j.est.2020.101538.

J. Li, L. Wang, C. Lyu, E. Liu, Y. Xing, M. Pecht, A parameter estimation method
for a simplified electrochemical model for li-ion batteries, Electrochimica Acta 275
(2018) 50-58, doi:10.1016/j.electacta.2018.04.098.

Y.Y. Choi, S. Kim, S. Kim, J.-I. Choi, Multiple parameter identification using genetic
algorithm in vanadium redox flow batteries, Journal of Power Sources 450 (2020)
227684, doi:10.1016/j.jpowsour.2019.227684.

R. Ahmed, M. El Sayed, I. Arasaratnam, J. Tjong, S. Habibi, Reduced-order electro-
chemical model parameters identification and soc estimation for healthy and aged
li-ion batteries part i: Parameterization model development for healthy batteries,
IEEE Journal of Emerging and Selected Topics in Power Electronics 2 (3) (2014)
659-677, doi:10.1109/JESTPE.2014.2331059.

W. Li, M. Rentemeister, J. Badeda, D. Jost, D. Schulte, D.U. Sauer, Digital twin
for battery systems: Cloud battery management system with online state-of-charge
and state-of-health estimation, Journal of Energy Storage 30 (2020) 101557,
doi:10.1016/j.est.2020.101557.

M.A. Rahman, S. Anwar, A. Izadian, Electrochemical model parameter identification
of a lithium-ion battery using particle swarm optimization method, Journal of Power
Sources 307 (2016) 86-97, doi:10.1016/j.jpowsour.2015.12.083.

X. Yang, L. Chen, X. Xu, W. Wang, Q. Xu, Y. Lin, Z. Zhou, Parameter identification
of electrochemical model for vehicular lithium-ion battery based on particle swarm
optimization, Energies 10 (11) (2017) 1811, doi:10.3390/en10111811.

Z. Chu, R. Jobman, A. Rodriguez, G.L. Plett, M.S. Trimboli, X. Feng, M. Ouyang, A
control-oriented electrochemical model for lithium-ion battery. Part II: Parameter
identification based on reference electrode, Journal of Energy Storage 27 (2020)
101101, doi:10.1016/j.est.2019.101101.

G. Fan, Systematic parameter identification of a control-oriented electrochem-
ical battery model and its application for state of charge estimation at var-
ious operating conditions, Journal of Power Sources 470 (2020) 228153,
doi:10.1016/j.jpowsour.2020.228153.

M. Doyle, T.F. Fuller, J. Newman, Modeling of galvanostatic charge and discharge
of the lithium/polymer/insertion cell, Journal of The Electrochemical Society 140
(6) (1993) 1526, doi:10.1149/1.2221597.

N.A. Chaturvedi, R. Klein, J. Christensen, J. Ahmed, A. Kojic, Algorithms for ad-
vanced battery-management systems, IEEE Control Systems 30 (3) (2010) 49-68,
doi:10.1109/MCS.2010.936293.

V.R. Subramanian, V. Boovaragavan, V. Ramadesigan, M. Arabandi, Mathemati-
cal model reformulation for lithium-ion battery simulations: Galvanostatic bound-
ary conditions, Journal of The Electrochemical Society 156 (4) (2009) A260,
doi:10.1149/1.3065083.

L. Cai, R.E. White, Reduction of model order based on proper orthogonal decom-
position for lithium-ion battery simulations, Journal of The Electrochemical Society
156 (3) (2009) A154, doi:10.1149/1.3049347.

S. v. Erhard, P.J. Osswald, P. Keil, E. Hoffer, M. Haug, A. Noel, J. Wilhelm, B. Rieger,
K. Schmidt, S. Kosch, F.M. Kindermann, F. Spingler, H. Kloust, T. Thoennessen,
A. Rheinfeld, A. Jossen, Simulation and measurement of the current density dis-
tribution in lithium-ion batteries by a multi-tab cell approach, Journal of The Elec-
trochemical Society 164 (1) (2017) A6324-A6333, doi:10.1149/2.0551701jes.

K. Smith, C.-Y. Wang, Solid-state diffusion limitations on pulse operation of a lithium
ion cell for hybrid electric vehicles, Journal of Power Sources 161 (1) (2006) 628—
639, doi:10.1016/j.jpowsour.2006.03.050.

Y. Ji, Y. Zhang, C.-Y. Wang, Li-ion cell operation at low temperatures, Journal of
The Electrochemical Society 160 (4) (2013) A636-A649, doi:10.1149/2.047304jes.
J. Smekens, J. Paulsen, W. Yang, N. Omar, J. Deconinck, A. Hubin, J. van
Mierlo, A modified multiphysics model for lithium-ion batteries with a
LixNil/3Mn1/3C01/302 electrode, Electrochimica Acta 174 (2015) 615-624,
doi:10.1016/j.electacta.2015.06.015.

A. Rheinfeld, J. Sturm, A. Noel, J. Wilhelm, A. Kriston, A. Pfrang, A. Jossen, Quasi-
isothermal external short circuit tests applied to lithium-ion cells: Part II. modeling

570

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Energy Storage Materials 44 (2022) 557-571

and simulation, Journal of The Electrochemical Society 166 (2) (2019) A151-A177,
doi:10.1149/2.0071902jes.

P.R. Nileshwar, A. McGordon, T.R. Ashwin, Greenwood, Parametric opti-
mization study of a lithium-ion cell, Energy Procedia 138 (2017) 829-834,
doi:10.1016/j.egypro.2017.10.088.

S.G. Stewart, V. Srinivasan, J. Newman, Modeling the performance of lithium-ion
batteries and capacitors during hybrid-electric-vehicle operation, Journal of The
Electrochemical Society 155 (9) (2008) A664, doi:10.1149/1.2953524.

W. Fang, O.J. Kwon, C.-Y. Wang, Electrochemical-thermal modeling of automotive
Li-ion batteries and experimental validation using a three-electrode cell, Interna-
tional Journal of Energy Research 34 (2) (2010) 107-115, doi:10.1002/er.1652.
H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, X. Zhang, A review of recent developments
in membrane separators for rechargeable lithium-ion batteries, Energy Environ. Sci.
7 (12) (2014) 3857-3886, doi:10.1039/C4EE01432D.

T.R. Tanim, C. d. Rahn, C.-Y. Wang, A temperature dependent, single particle,
lithium ion cell model including electrolyte diffusion, Journal of Dynamic Systems,
Measurement, and Control 137 (1) (2015) 011005, doi:10.1115/1.4028154.

A. Awarke, S. Pischinger, J. Ogrzewalla, Pseudo 3D modeling and analysis of the
SEI growth distribution in large format li-ion polymer pouch cells, Journal of The
Electrochemical Society 160 (1) (2013) A172-A181, doi:10.1149/2.022302jes.

C. Capiglia, Y. Saito, H. Kageyama, P. Mustarelli, T. Iwamoto, T. Tabuchi,
H. Tukamoto, 7Li and 19F diffusion coefficients and thermal properties of non-
aqueous electrolyte solutions for rechargeable lithium batteries, Journal of Power
Sources 81-82 (1999) 859-862, doi:10.1016,/50378-7753(98)00237-7.

A. Ehrl, J. Landesfeind, W.A. Wall, H.A. Gasteiger, Determination of transport pa-
rameters in liquid binary lithium ion battery electrolytes, Journal of The Electro-
chemical Society 164 (4) (2017) A826-A836, doi:10.1149/2.1131704jes.

A. Nyman, M. Behm, G. Lindbergh, Electrochemical characterisation and modelling
of the mass transport phenomena in LiPF6-EC-EMC electrolyte, Electrochimica Acta
53 (22) (2008) 6356-6365, doi:10.1016/j.electacta.2008.04.023.

L.O. Valoen, J.N. Reimers, Transport properties of LiPF6-based Li-ion battery
electrolytes, Journal of The Electrochemical Society 152 (5) (2005) A882,
doi:10.1149/1.1872737.

Y.-H. Chen, C.-W. Wang, X. Zhang, A.M. Sastry, Porous cathode optimiza-
tion for lithium cells: Ionic and electronic conductivity, capacity, and se-
lection of materials, Journal of Power Sources 195 (9) (2010) 2851-2862,
doi:10.1016/j.jpowsour.2009.11.044.

M. Park, X. Zhang, M. Chung, G.B. Less, A.M. Sastry, A review of conduction phe-
nomena in li-ion batteries, Journal of Power Sources 195 (24) (2010) 7904-7929,
doi:10.1016/j.jpowsour.2010.06.060.

K. Schittkowski, Experimental design tools for ordinary and algebraic differential
equations, Industrial & Engineering Chemistry Research 46 (26) (2007) 9137-9147,
doi:10.1021/ie0703742.

W. Li, D. Cao, D. Jost, F. Ringbeck, M. Kuipers, F. Frie, D.U. Sauer, Pa-
rameter sensitivity analysis of electrochemical model-based battery manage-
ment systems for lithium-ion batteries, Applied Energy 269 (2020) 115104,
doi:10.1016/j.apenergy.2020.115104.

X.-S. Yang, S. Deb, Cuckoo search via lévy flights, in: World Congress on Nature &
Biologically Inspired Computing, 2009, IEEE, Piscataway, N.J., 2009, pp. 210-214,
do0i:10.1109/NABIC.2009.5393690.

X.-S. Yang, S. Deb, Multiobjective cuckoo search for design optimization, Computers
& Operations Research 40 (6) (2013) 1616-1624, doi:10.1016/j.cor.2011.09.026.
X.-S. Yang, S. Deb, Engineering optimisation by cuckoo search, Int. J.
Mathematical Modelling and Numerical Optimisation 1 (4) (2010) 330-343,
doi:10.1504/1JMMNO.2010.03543.

1. Fister Jr, D. Fister, I. Fister, A comprehensive review of cuckoo search: variants
and hybrids, International Journal of Mathematical Modelling and Numerical Opti-
misation 4 (4) (2013) 387, doi:10.1504/1JMMNO.2013.059205.

M.A. Adnan, M.A. Razzaque, A comparative study of particle swarm optimization
and cuckoo search techniques through problem-specific distance function, in: 2013
International Conference of Information and Communication Technology (ICoICT),
IEEE, 2013, pp. 88-92, doi:10.1109/icoict.2013.6574619.

W. Li, N. Sengupta, P. Dechent, D. Howey, A. Annaswamy, D.U. Sauer,
Online capacity estimation of lithium-ion batteries with deep long short-
term memory networks, Journal of Power Sources 482 (2021) 228863,
doi:10.1016/j.jpowsour.2020.228863.

W. Li, H. Cui, T. Nemeth, J. Jansen, C. Unliibayir, Z. Wei, L. Zhang, Z. Wang, J. Ruan,
H. Dai, X. Wei, D.U. Sauer, Deep reinforcement learning-based energy management
of hybrid battery systems in electric vehicles, Journal of Energy Storage 36 (1)
(2021) 102355, doi:10.1016/j.est.2021.102355.

S. Wang, D. Guo, X. Han, L. Lu, K. Sun, W. Li, D.U. Sauer, M. Ouyang, Impact of bat-
tery degradation models on energy management of a grid-connected dc microgrid,
Energy 207 (2020) 118228, doi:10.1016/j.energy.2020.118228.

W. Li, H. Cui, T. Nemeth, J. Jansen, C. Unliibayir, Z. Wei, X. Feng, X. Han, M. Ouyang,
H. Dai, X. Wei, D.U. Sauer, Cloud-based health-conscious energy management of
hybrid battery systems in electric vehicles with deep reinforcement learning, Applied
Energy 293 (39) (2021) 116977, doi:10.1016/j.apenergy.2021.116977.

J. Wu, Z. Wei, W. Li, Y. Wang, Y. Li, D. Sauer, Battery thermal- and health-
constrained energy management for hybrid electric bus based on soft actor-
critic drl algorithm, IEEE Transactions on Industrial Informatics (2020) 1,
doi:10.1109/TI11.2020.3014599.

W. Li, N. Sengupta, P. Dechent, D. Howey, A. Annaswamy, D.U. Sauer, One-shot bat-
tery degradation trajectory prediction with deep learning, Journal of Power Sources
506 (1) (2021) 230024, doi:10.1016/j.jpowsour.2021.230024.


https://doi.org/10.1002/9781119387053
https://doi.org/10.1016/j.jpowsour.2012.03.009
https://doi.org/10.1149/2.0191614jes
https://doi.org/10.1155/2013/754653
https://doi.org/10.1149/2.048405jes
https://doi.org/10.1149/2.0861608jes
https://doi.org/10.1016/j.electacta.2019.03.199
https://doi.org/10.1016/j.est.2020.101538
https://doi.org/10.1016/j.electacta.2018.04.098
https://doi.org/10.1016/j.jpowsour.2019.227684
https://doi.org/10.1109/JESTPE.2014.2331059
https://doi.org/10.1016/j.est.2020.101557
https://doi.org/10.1016/j.jpowsour.2015.12.083
https://doi.org/10.3390/en10111811
https://doi.org/10.1016/j.est.2019.101101
https://doi.org/10.1016/j.jpowsour.2020.228153
https://doi.org/10.1149/1.2221597
https://doi.org/10.1109/MCS.2010.936293
https://doi.org/10.1149/1.3065083
https://doi.org/10.1149/1.3049347
https://doi.org/10.1149/2.0551701jes
https://doi.org/10.1016/j.jpowsour.2006.03.050
https://doi.org/10.1149/2.047304jes
https://doi.org/10.1016/j.electacta.2015.06.015
https://doi.org/10.1149/2.0071902jes
https://doi.org/10.1016/j.egypro.2017.10.088
https://doi.org/10.1149/1.2953524
https://doi.org/10.1002/er.1652
https://doi.org/10.1039/C4EE01432D
https://doi.org/10.1115/1.4028154
https://doi.org/10.1149/2.022302jes
https://doi.org/10.1016/S0378-7753(98)00237-7
https://doi.org/10.1149/2.1131704jes
https://doi.org/10.1016/j.electacta.2008.04.023
https://doi.org/10.1149/1.1872737
https://doi.org/10.1016/j.jpowsour.2009.11.044
https://doi.org/10.1016/j.jpowsour.2010.06.060
https://doi.org/10.1021/ie0703742
https://doi.org/10.1016/j.apenergy.2020.115104
https://doi.org/10.1109/NABIC.2009.5393690
https://doi.org/10.1016/j.cor.2011.09.026
https://doi.org/10.1504/IJMMNO.2010.03543
https://doi.org/10.1504/IJMMNO.2013.059205
https://doi.org/10.1109/icoict.2013.6574619
https://doi.org/10.1016/j.jpowsour.2020.228863
https://doi.org/10.1016/j.est.2021.102355
https://doi.org/10.1016/j.energy.2020.118228
https://doi.org/10.1016/j.apenergy.2021.116977
https://doi.org/10.1109/TII.2020.3014599
https://doi.org/10.1016/j.jpowsour.2021.230024

	Data-driven systematic parameter identification of an electrochemical model for lithium-ion batteries with artificial intelligence
	1 Introduction
	1.1 Motivation
	1.2 Literature review
	1.3 Contributions

	2 Electrochemical modeling
	3 Parameter sensitivity analysis
	4 Data-driven parameter identification
	4.1 Cuckoo search algorithm
	4.2 Multi-objective multi-step parameter identification framework
	4.2.1 Multi-objective fitness function
	4.2.2 Multi-step parameter identification
	4.2.3 Identification process overcoming overfitting


	5 Experimental
	5.1 Pre-identification experiments
	5.2 Experiments for data generation

	6 Results and discussion
	6.1 Numerical validation
	6.1.1 Comparative study with particle swarm optimization
	6.1.2 Validation of the multi-objective multi-step approach

	6.2 Experimental validation
	6.3 Future work and applications

	7 Conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgment
	References


