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a b s t r a c t 

Electrochemical models are more and more widely applied in battery diagnostics, prognostics and fast charging 
control, considering their high fidelity, high extrapolability and physical interpretability. However, parameter 
identification of electrochemical models is challenging due to the complicated model structure and a large number 
of physical parameters with different identifiability. The scope of this work is the development of a data-driven 
parameter identification framework for electrochemical models for lithium-ion batteries in real-world operations 
with artificial intelligence, i.e., the cuckoo search algorithm. Only current and voltage data are used as input for 
the multi-objective global optimization of the parameters considering both voltage error between the model and 
the battery and the relative capacity error between two electrodes. The multi-step identification process based 
on sensitivity analysis increases the identification accuracy of the parameters with low sensitivity. Moreover, the 
novel identification process inspired by the training process in machine learning further overcomes the overfitting 
problem using limited battery data. The data-driven approach achieves a maximum root mean square error of 
9 mV and 12.7 mV for the full cell voltage under constant current discharging and real-world driving cycles, 
respectively, which is only 17.9% and 42.9% of that of the experimental identification approach. 
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. Introduction 

.1. Motivation 

Driven by both political and technological initiatives towards eco-
ogical mobility, transportation electrification in various areas, such as
ehicles, trains, ships and aircraft, is becoming more and more popular.
mong all the energy sources for the electrified transportation appli-
ations, such as plug-in hybrid electric vehicles (PHEVs), hybrid elec-
ric vehicles (HEVs), and electric vehicles (EVs), the lithium-ion battery
LIB) is one of the most promising candidates, combining high energy
ensity, low self-discharge, long lifetime and reliable safety [1] . Over
he past years, significant research has been conducted to build sophis-
icated models in different scales to estimate and predict battery dynam-
cs. Compared with equivalent circuit models (ECMs), which are used
n most battery management systems (BMSs), the electrochemical mod-
ls (EMs) promise numerous improvements considering extrapolation
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bility and physical representation of battery internal states, especially
nder extreme conditions. 

Although various research has been conducted to accomplish tasks in
MS based on EMs, such as state estimation [2–4] , aging identification
5] , power prediction [6] and fast charging control [7] , fast and accurate
dentification of all the parameters in the EMs for new batteries remains
s one of the challenges due to a large number of parameters with vari-
us sensitivities and the high nonlinearity and complexity of the battery
odel. While the formulation of the model equations in EMs can also be
ealt with abstractly for all batteries with different chemistry, the pa-
ameterization must be carried out individually for each specific cell as
he parameter values may vary due to different cell designs. Conclusions
bout the internal states of the battery can only be drawn if an accurate
arameter set of the model is provided. Ecker et al. [8,9] determined
nd parameterized an EM for an NMC/graphite pouch cell experimen-
ally by opening the cell under an argon atmosphere and measuring the
arameters with various laboratory apparatus. Similarly, Schmalstieg
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t al. [10,11] further extracted the physical parameters together with
hermal parameters from a high-power prismatic cell by opening the
ell and measuring the parameters experimentally. Although these pio-
eering work provided not only parameter values for specific cells but
lso the determination procedures in detail, invasive parameter identi-
cation steps can be very time-consuming, expensive and lack accuracy

or some dynamic applications. 

.2. Literature review 

Although the poor identifiability of the model parameters caused by
onlinearities, redundant definitions, intertwined physical phenomena
nd time-scale separations in battery dynamics [12] is a great challenge,
ata-driven non-invasive methods are attracting more and more atten-
ion from both industry and academy due to the cost and time reduc-
ion compared with invasive experimental procedures. In some cases,
he cells are even not allowed to be opened for the post-mortem mea-
urement due to a non-disclosure agreement with the cell manufacturer,
hich further raises the requirements on accurate and fast data-driven
arameter identification methods. Among the approaches found in the
iterature, various gradient-based nonlinear least-square regression al-
orithms have been used widely to identify the parameters by minimiz-
ng the sum of the squared voltage errors. Boovaragavan et al. [13] esti-
ated four transport and kinetic parameters using a reformulated EM for

n LCO/graphite cell. Similarly, Ramadesigan et al. [14] identified ef-
ective kinetic and transport parameters from experimental data. In both
ases, the Jacobian-based Gauss-Newton method was used to solve the
onlinear regression problem. Considering the better efficiency over the
auss’ algorithm in dealing with nonlinear problems, Santhanagopalan
t al. [15] identified five parameters under constant charge and dis-
harge currents for the pseudo-2-dimension (P2D) model and a refor-
ulated EM, respectively, using the Levenberg-Marquardt method. In
ef. [16] , nine parameters were identified with the same algorithm for
 reduced-order EM. However, no experimental validation with a LIB
ell was carried out to verify the identification reliability. Schmidt et al.
17] further increased the number of identifiable parameters by adding
he number of experiment datasets, which exposed the contribution of
he increase of experimental data to a successful parameter identifica-
ion. A total of 24 parameters were identified with the pattern search
lgorithm for an extended single particle model. 

With the success of artificial intelligence, especially the metaheuris-
ic algorithms, which is a group of bio-inspired gradient-free iterative
ptimization processes that are immune to local minimum traps [18] in
olving the global optimization problems in other research fields, more
nd more research was conducted successfully in identifying the phys-
cal parameters of EMs. Genetic algorithm (GA) is one of the most fre-
uently used metaheuristic algorithms for data-driven parameter iden-
ification [19–28] . Forman et al. [19] assessed the parameter identifi-
bility with Fisher information and identified a set of 88 parameters
f a P2D model by GA based on constant-current charge and discharge
ataset. However, the dataset doesn’t include the data with high dy-
amics, which are essential for the identification of impedance-related
arameters. The identification of a large number of insensitive param-
ters not only increases the computation burden exponentially but also
oesn’t contribute to any significant model performance increase. Zhang
t al. [21,22] proposed a multi-objective optimization approach consid-
ring both voltage and temperature error of the model for the identifica-
ion of 25 parameters with GA. In comparison, Li et al. [23] proposed a
ivide-and-conquer strategy to divide the full set of P2D parameters into
wo groups for separate identification with GA. However, the identified
arameters were not validated under other experimental conditions. In
ef. [24] , Pang et al. proposed a systematic parameter identification
cheme to conduct the identification of 16 parameters for an extended
PM with GA and validation against the different experimental data ac-
uired from a 2 Ah NMC/graphite cell. 
558 
Compared with GA, particle swarm optimization (PSO) has an in-
uilt guidance strategy, which offers distinct notable advantages, e.g.,
reater diversity and exploration, faster convergence and more variety
n search trajectories. The use of memory to store the previous best so-
utions obtained by every candidate results in faster convergence and
igher robustness of PSO. Therefore, it has also been used in the identi-
cation of parameters for both ECMs [29] and EMs [30] . Rahman et al.
30] tracked the change of four parameters of a cylindrical cell with
n LCO cathode during aging by PSO. Yang et al. [31] identified 16
hysical parameters based on the discharge experiment of 0.5 C with
SO. Chu et al. [32] designed a multi-step approach to identify differ-
nt parameters divided by frequency decomposition in each step and the
eformulated EM with the identified parameters was validated experi-
entally under a standard driving cycle. Moreover, Fan et al. [33] fur-

her proposed a two-step parameter identification approach based on
 large number of experimental datasets to identify 26 parameters for
n NMC/graphite battery cell. Although GA and PSO are widely used in
arameter identification of the EMs, the identification efficiency and ac-
uracy need to be further increased in both algorithm and methodology
evel considering the industry need. Furthermore, parameter overfitting
s a regular problem due to the lack of data as a result of the required
hort testing time, which needs to be solved by redesigning the whole
ata-driven identification framework. There is also rare work compar-
ng the identification accuracy between the experimental method and
he data-driven method. 

.3. Contributions 

This paper aims to bridge the aforementioned research gap and
roposes a data-driven approach using artificial intelligence, i.e., the
uckoo search algorithm, to identify the parameters of EMs in real-world
peration. The comprehensive benchmarking of the parameter values in
iterature defines the boundary values of the parameters in electrodes
nd electrolytes with the same chemistry, remaining the physical mean-
ng of the parameters. Parameter sensitivity analysis was further car-
ied out to categorize the total 26 parameters into three groups with
igh, medium and low sensitivity. The proposed framework only uses
he current and voltage data of a battery to identify the parameters.
ot only voltage error between model and cell but also capacity error
etween two electrodes are defined as optimization objectives, which
educes the identification errors of the capacity-related parameters. Fur-
hermore, the multi-step identification approach considering the differ-
nces of the parameter sensitivities increases the identification accuracy
f the parameters with lower sensitivity. The proposed framework was
rst validated numerically with a virtual cell and compared with other
ata-driven methods considering the identification errors of parameters,
omputation efficiency and convergence speed. The verification of the
ata-driven parameter identification framework with an NMC/graphite
ommercial cell experimentally further highlights the robustness and
eliability of the approach compared with invasive experimental identi-
cation methods. 

. Electrochemical modeling 

The P2D model developed by Doyle et al. [34] describes the solid and
lectrolyte dynamics of LIBs in the positive electrode, separator and neg-
tive electrode. On the macroscopic scale, the chemical reaction kinet-
cs are assumed to influence the battery dynamics only in x-dimension,
here lithium ions can transfer in the electrolyte throughout all domains

n the liquid phase. On the microscopic scale, the solid particles in both
lectrodes are assumed to be spheres with specific radii, and lithium ions
an diffuse along the r-dimension inside the solid phase. As shown in the
chematic of the P2D model in Fig. 1 , the whole LIB is divided into three
ifferent domains, i.e., anode (ranges from 0 − to 𝐿 

− ), separator (ranges
rom 0 𝑠 to 𝐿 

𝑠 ) and cathode (ranges from 𝐿 

+ to 0 + ). The particles rep-
esent the porous electrodes and are surrounded by the electrolyte, and
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Table 1 

Summary of the governing equations of a P2D-model. 

Mechanisms Governing equations Boundary conditions 

Electrode mass transport 
𝜕𝑐 𝑠 ( 𝑟, 𝑥, 𝑡 ) 

𝜕𝑡 
= 1 
𝑟 2 

𝜕 

𝜕𝑟 

( 
𝐷 𝑠 𝑟 

2 𝜕𝑐 𝑠 ( 𝑟, 𝑥, 𝑡 ) 
𝜕𝑟 

) 
𝜕𝑐 𝑖 

𝑠 
( 𝑟, 𝑥, 𝑡 ) 
𝜕𝑟 

|||||𝑟 =0 = 0 , 
𝜕𝑐 𝑖 

𝑠 
( 𝑟, 𝑥, 𝑡 ) 
𝜕𝑟 

|||||𝑟 = 𝑅 𝑖 
𝑝 

= − 𝑗( 𝑥,𝑡 ) 
𝐷 𝑖 
𝑠 

Electrolyte mass transport 
𝜕𝑐 𝑒 ( 𝑥, 𝑡 ) 
𝜕𝑡 

= 𝜕 
𝜕𝑥 

( 
𝐷 𝑒, eff

𝜕𝑐 𝑒 ( 𝑥, 𝑡 ) 
𝜕𝑥 

) 
+ 
𝑎 (1 − 𝑡 0 + ) 

𝜀 𝑒 
𝑗( 𝑥, 𝑡 ) 𝑐 𝑒 ( 𝐿 + , 𝑡 ) = 𝑐 𝑒 ( 𝐿 𝑠 , 𝑡 ) , 

𝑐 𝑒 (0 𝑠 , 𝑡 ) = 𝑐 𝑒 ( 𝐿 − , 𝑡 ) , 

𝐷 𝑒, eff
𝜕𝑐 𝑒 ( 𝑥, 𝑡 ) 
𝜕𝑥 

|||||𝑥 = 𝐿 + = 𝐷 𝑒, eff
𝜕𝑐 𝑒 ( 𝑥, 𝑡 ) 
𝜕𝑥 

|||||𝑥 = 𝐿 𝑠 , 
𝐷 𝑒, eff

𝜕𝑐 𝑒 ( 𝑥, 𝑡 ) 
𝜕𝑥 

|||||𝑥 =0 𝑠 = 𝐷 𝑒, eff
𝜕𝑐 𝑒 ( 𝑥, 𝑡 ) 
𝜕𝑥 

|||||𝑥 = 𝐿 − 
Solid potential of particles 

𝜕 

𝜕𝑥 

( 
𝜎𝑠, eff

𝜕𝜙𝑠 ( 𝑥, 𝑡 ) 
𝜕𝑥 

) 
= 𝑎𝐹 𝑗( 𝑥, 𝑡 ) 𝜎𝑠, eff

𝜕𝜙𝑠 ( 𝑥, 𝑡 ) 
𝜕𝑥 

|||||𝑥 = 𝐿 + ,𝐿 − = − 𝐼( 𝑡 ) 𝐴 
, 

𝜎𝑠, eff
𝜕𝜙𝑠 ( 𝑥, 𝑡 ) 
𝜕𝑥 

|||||𝑥 =0 − , 0 + = 0 
Electrolyte potential 

𝜕 

𝜕𝑥 

( 

𝜎𝑒, eff
𝜕𝜙𝑒 ( 𝑥, 𝑡 ) 
𝜕𝑥 

− 𝜎𝑒, eff

2 𝑅𝑇 (1 − 𝑡 0 + ) 
𝐹 

⋅
𝜕 ln 𝑐 𝑒 ( 𝑥, 𝑡 ) 

𝜕𝑥 

) 

= − 𝑎𝐹 𝑗( 𝑥, 𝑡 ) 
𝜕𝜙𝑒 ( 𝑥, 𝑡 ) 
𝜕𝑥 

|||||𝑥 =0 + = 0 , 
𝜕𝜙𝑒 ( 𝑥, 𝑡 ) 
𝜕𝑥 

|||||𝑥 = 𝐿 − = 0 , 
𝜎𝑒, eff

𝜕𝜙𝑒 ( 𝑥, 𝑡 ) 
𝜕𝑥 

|||||𝑥 = 𝐿 + = 𝜎𝑒, eff
𝜕𝜙𝑒 ( 𝑥, 𝑡 ) 
𝜕𝑥 

|||||𝑥 = 𝐿 𝑠 , 
𝜎𝑒, eff

𝜕𝜙𝑒 ( 𝑥, 𝑡 ) 
𝜕𝑥 

|||||𝑥 =0 𝑠 = 𝜎𝑒, eff
𝜕𝜙𝑒 ( 𝑥, 𝑡 ) 
𝜕𝑥 

|||||𝑥 = 𝐿 − 
Butler-Volmer equation 𝑗( 𝑥, 𝑡 ) = 𝑖 0 ( 𝑥,𝑡 ) 

𝐹 

(
exp 

(
𝛼𝑎 𝐹 

𝑅𝑇 
𝜂( 𝑥, 𝑡 ) 

)
− exp 

(
− 𝛼𝑐 𝐹 

𝑅𝑇 
𝜂( 𝑥, 𝑡 ) 

))
𝜂( 𝑥, 𝑡 ) = 𝜙𝑠 ( 𝑥, 𝑡 ) − 𝜙𝑒 ( 𝑥, 𝑡 ) − 𝑈 

(
𝑐 𝑠𝑠 ( 𝑥,𝑡 ) 
𝑐 𝑠,𝑚𝑎𝑥 

)
− 𝐹𝑅 𝑓 𝑗( 𝑥, 𝑡 ) 

𝑖 0 ( 𝑥, 𝑡 ) = 𝜅eff𝐹𝑐 𝑒 ( 𝑥, 𝑡 ) 𝛼𝑎 ( 𝑐 𝑠,𝑚𝑎𝑥 − 𝑐 𝑠𝑠 ( 𝑥, 𝑡 )) 𝛼𝑎 𝑐 𝑠𝑠 ( 𝑥, 𝑡 ) 
𝛼𝑐 

Terminal voltage 𝑉 ( 𝑡 ) = 𝜙𝑠 (0 + , 𝑡 ) − 𝜙𝑠 (0 − , 𝑡 ) 

Fig. 1. Schematic of the electrochemical modeling for LIBs. 
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he electrodes are separated by the separator. During charging, lithium
ons deintercalate from the active material in the positive electrode and
ove into the electrolyte solution. By diffusion and ionic conduction,

he lithium ions transport through the separator and arrive at the sur-
ace of the negative electrode and finally intercalate into the active ma-
erial. Several coupled nonlinear partial algebraic differential equations
PDAEs) map the transport processes of lithium ions in spatial and tem-
oral terms within the electrode and the electrolyte, which are summa-
ized together with the boundary conditions in Table 1 . Both the con-
entration of lithium ions in electrodes and electrolyte, i.e., 𝑐 𝑠 ( 𝑟, 𝑥, 𝑡 ) and
 𝑒 ( 𝑥, 𝑡 ) , and the potentials within the cell, i.e., solid potential, Φ𝑠 ( 𝑥, 𝑡 ) ,
lectrolyte potential, Φ𝑒 ( 𝑥, 𝑡 ) , open-circuit potential (OCP), 𝑈 ( 𝑥, 𝑡 ) , and
ithium-intercalation overpotential, 𝜂( 𝑥, 𝑡 ) , can be derived from these
quations. To consider the properties of the battery materials, effective
onductivity and diffusion coefficients with “eff” suffixes are used based
n Bruggeman’s theory. Moreover, 𝑎 = (3∕ 𝑅 𝑝 ) 𝜀 𝑠 represents the specific
nterfacial area, 𝛼 = 𝛼 = 0 . 5 are the charge transfer coefficients, and
𝑎 𝑐 

559 
he descriptions of the other parameters are summarized in Table 2 .
he readers are referred to [35] for further derivation details. 

Most numerical methods for model-based state estimation and pa-
ameter identification require the model to consist of ordinary differen-
ial equations (ODEs) or algebraic equations (AEs) rather than PDAEs.
he model-order reduction process is very challenging to carry out in a
ay that is numerically stable and computationally efficient for a wide

ange of battery operating conditions and parameter sets. In this work,
he PDAEs of the P2D model are transformed into ODEs and AEs using
he finite-difference method [36] in micro-scale and the finite-volume
ethod [37] in macro-scale. The number of discretization nodes for both
icro-scale and macro-scale in each domain equals 10, considering the

ompromise between model accuracy and computational efficiency. 

. Parameter sensitivity analysis 

In contrast to ECMs, EMs consist of a large number of physical param-
ters, and the experimental identification process of these parameters is
ery complicated, expensive and time-consuming [8,9] . To identify the
arameters of the EM based on current and voltage data, reasonable
arameter value ranges need to be provided to maintain the physical
eaning of the identified parameters and the sensitivity of the param-

ters under the specific ranges needs to be analyzed before identifica-
ion. As summarized in Table 2 , the total 26 physical parameters are
rouped into four categories, i.e., geometric parameters, transport pa-
ameters, kinetic parameters, and concentration parameters. The value
anges of these parameters are determined for NMC/graphite cells based
n a comprehensive benchmarking with more than 25 pieces of litera-
ure and experimental measurement. The superscripts + , - and 𝑠 of
he parameters represent cathode, anode and separator, respectively. To
btain the boundary values for the physical parameters, no other con-
traints except the cell materials are applied in the literature review of
he parameter values in Table 2 , which leads to a relatively large value
ange for some parameters. Therefore, these parameter boundaries can
e used for parameter identification of almost all NMC/graphite LIB cells
ith small adaptions. The only parameters that require opening the cell
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Table 2 

Summary of parameter ranges and sensitivity of lithium-NMC-graphite cells. 

Category Parameter Unit Description Boundary Reference Sensitivity 

Geometric parameters 𝐿 + 𝜇𝑚 Cathode thickness 35 - 79 [8,38–44] High 
𝐿 𝑠 𝜇𝑚 Separator thickness 10 - 30 [8,38–43,45,46] Medium 

𝐿 − 𝜇𝑚 Anode thickness 35 - 79 [8,38–44] High 
𝐴 𝑚 2 Electrode surface area 0.378 - 0.395 Measurement High 
𝜀 + 
𝑠 

- Cathode active material volume fraction 0.35 - 0.5 [8,38,42,44] High 
𝜀 − 
𝑠 

- Anode active material volume fraction 0.4 - 0.5 [8,38,42,44] High 
𝜀 + 
𝑒 

- Cathode electrolyte volume fraction 0.27 - 0.45 [8,38–41,43,44,47] Medium 

𝜀 𝑠 
𝑒 

- Separator electrolyte volume fraction 0.4 - 0.55 [8,38–44,47] Low 

𝜀 − 
𝑒 

- Anode electrolyte volume fraction 0.26 - 0.5 [8,38–41,43,44,47] Medium 

𝑅 + 
𝑝 

𝜇𝑚 Cathode particle radius 1 - 11 [8,40–42,44,45,47] High 
𝑅 − 
𝑝 

𝜇𝑚 Anode particle radius 1 - 11 [8,40–42,45,47] High 
Transport parameters 𝐷 + 

𝑠 
10 −14 𝑚 2 𝑠 −1 Cathode solid diffusion coefficient 1 - 10 [38,40,41,43,45,47,48] High 

𝐷 − 
𝑠 

10 −14 𝑚 2 𝑠 −1 Anode solid diffusion coefficient 1 - 10 [38,40,43,45,47,48] High 
𝐷 𝑒 10 −10 𝑚 2 𝑠 −1 Electrolyte diffusion coefficient 1.5 - 4.5 [8,39,43,49,50] Medium 

𝑏 + - Cathode Bruggeman coefficient 1.3 - 1.7 [39,45] Low 

𝑏 𝑠 - Separator Bruggeman coefficient 1.3 - 1.7 [39,43,45,48] Low 

𝑏 − - Anode Bruggeman coefficient 1.3 - 1.7 [39,45] Low 

𝑡 + 0 - Transference number of lithium cation 0.25 - 0.43 [8,38,39,43,47–49,51,52] Medium 

𝜎+ 
𝑠 

𝑆𝑚 −1 Cathode electrode conductivity 36 - 185 [53] Low 

𝜎− 
𝑠 

𝑆𝑚 −1 Anode electrode conductivity 1 - 1 ⋅ 10 4 [54] Low 

Kinetic parameters 𝜅+ 10 −11 𝑚 2 . 5 ∕( 𝑚𝑜𝑙 0 . 5 𝑠 ) Cathode reaction rate coefficient 1 - 10 [8,38,41,42,44] High 
𝜅− 10 −11 𝑚 2 . 5 ∕( 𝑚𝑜𝑙 0 . 5 𝑠 ) Anode reaction rate coefficient 1 - 20 [8,38,41,42] High 
𝑅 𝑓 10 −3 Ω𝑚 2 Anode SEI film resistance 1 - 10 [42,48] High 

Concentration parameters 𝑐 + 
𝑠, max 10 4 𝑚𝑜𝑙𝑚 −3 Cathode maximum ionic concentration 4.8 - 5.2 [8,38,42,45,47,48] High 
𝑐 − 
𝑠, max 10 4 𝑚𝑜𝑙𝑚 −3 Anode maximum ionic concentration 2.9 - 3.3 [8,38,42,45,47,48] High 
𝑐 𝑒, 0 10 3 𝑚𝑜𝑙𝑚 −3 Initial electrolyte concentration 1 - 1.2 [8,39–41,43,45,47,48] Medium 
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Fig. 2. Summary of the parameter sensitivity related to cell terminal voltage. 
The parameters are categorized into three groups, i.e., high sensitivity, medium 

sensitivity and low sensitivity. 
o determine the boundaries are the electrode surface area, 𝐴 , and the
CP of the electrodes. The confidence interval of the measurement is
sed as the boundaries of 𝐴 . The opening of the cell can be avoided by
mplementing optical measurement methods to determine the bound-
ries of the geometric parameters and determining the OCP from the
iterature. 

Each physical parameter individually influences the model output,
.e., terminal voltage, under a designed current input, which represents
he sensitivity of the parameters. The consideration of insensitive pa-
ameters with large variances in the optimization problem is known to
ecrease the overall estimation quality substantially [55] . We have in-
estigated the parameter sensitivity of the P2D model with the One-At-
-Time (OAT) method in our previous work [56] . The sensitivity of the
arameters is mainly determined by the model structure, value range
f the parameter itself, and the value of the other parameters. There-
ore, all the above three factors need to be chosen to be similar to those
n real-world operating conditions to investigate the sensitivity of these
arameters. For all individual parameters, simulations were carried out
n which the examined parameter takes up ten discrete values under
niform distribution between its value boundaries, as summarized in
able 2 , and the remaining parameters are kept constant as the nominal
alue. The influence of different C-rates and depth of discharge (DOD)
egions of the respective parameters was tested at constant C-rate charg-
ng processes. The sensitivity of the seven capacity-related parameters
aries significantly at different DOD regions due to the horizontal shift
f the end-of-charge point, while the variations caused by the increase
f the C-rate are moderate. In contrast, the other parameters show a sig-
ificant sensitivity increase with an increase of the C-rate. In addition,
he sensitivity of the parameters on real-world driving cycles was also
nvestigated and the results are summarized in Table 2 and depicted in
ig. 2 . Out of 26 parameters, 14 parameters are identified as parameters
ith high sensitivity for the terminal voltage considering the values of

he normalized sensitivity index are over 0.01. Furthermore, six param-
ters are with medium sensitivity and the remaining six parameters are
ith low sensitivity. Besides, all capacity-related parameters, e.g., elec-

rode surface area, 𝐴 , electrode thickness, 𝐿 

+ and 𝐿 

− , active material
olume fraction, 𝜀 + 

𝑠 
and 𝜀 − 

𝑠 
, and maximum electrode ionic concentra-

ion, 𝑐 + 
𝑠,𝑚𝑎𝑥 

and 𝑐 − 
𝑠,𝑚𝑎𝑥 

, are sensitive for the terminal voltage. As the cell
560 
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Fig. 3. Flowchart of the cuckoo search algorithm. 
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eing analyzed in this work is a high-energy cell, the electrolyte- and
eparator-related parameters have relatively low sensitivity, which will
ot be the same for the high-power cells. The sensitivity analysis results
n this work is also not universal for all cell materials and the same anal-
sis should be carried out again when one of the three dominating fac-
ors changes. For example, the flat OCV curve in LFP and LTO cells will
educe the sensitivity of the capacity-related parameters significantly.
onsidering the differences in the sensitivity of the parameters, the in-
ccuracy of the parameters with high sensitivity can have an influence
n the identification of the parameters with low sensitivity. Therefore,
 multi-step parameter identification approach based on the sensitivity
nformation is needed. 

. Data-driven parameter identification 

As described in Section 3 , the parameters of an EM for LIBs can be ac-
uired through experimental measurements or be derived from physical
rinciples based on experimental data. However, some measurements
re time- and cost-intensive on the one hand and are limited in terms
f accuracy on the other hand. Therefore, a novel metaheuristic algo-
ithm will be introduced for the first time as a data-driven parameter
dentification method for EMs in this section. 

.1. Cuckoo search algorithm 

The cuckoo search algorithm (CSA) is a metaheuristic algorithm that
as been developed by Yang et al. [57,58] , inspired by the obligate
rood parasitism of cuckoo. Three idealized rules were defined to sim-
lify the breeding behavior of the cuckoo as an algorithm [59] : 1) Each
uckoo can lay only one egg at each time and dump it in a randomly
elected nest. 2) The nests with high-quality eggs will be passed to the
ext generation. 3) The number of host nests is not adjustable. A host
ird discovers an alien egg with the probability, 𝑝𝑎 ∈ [ 0 , 1 ] . If a cuckoo
gg is exposed, the host bird may either throw the egg away or abandon
ts own nest and build a new one elsewhere. 

According to the above rules, the CSA was implemented as the fol-
owing simple representation for the global optimization. The flowchart
f the algorithm is illustrated in Fig. 3 . As each egg in a nest denotes a
andidate solution, the task of CSA is to generate new and potentially
etter solutions to replace the worse solutions in the current nest. The
uality or fitness of a solution is evaluated by the objective function,
hich is related to the problem to be solved. 

To update a new solution set according to the first rule, the global
andom walk for exploring the search space is implemented through the
évy flight. For a given solution set, 𝑥 𝑡 

𝑖 
with 𝑖 ∈ [1 , 𝑛 ] , where 𝑛 represents

he number of solution sets (nests), the next solution set 𝑥 𝑡 +1 
𝑖 

is generated
y 

 

𝑡 +1 
𝑖 

= 𝑥 𝑡 
𝑖 
+ 𝛼 ⊗ 𝐿 ́𝑒 𝑣𝑦 ( 𝛽) , (1)

here 𝛼 = 𝛼0 ( 𝑥 
𝑡 
𝑖 
- 𝑥 𝑡 

𝑏𝑒𝑠𝑡 
) is the step size represented by a constant 𝛼0 mul-

iplied by the difference between the 𝑖 𝑡ℎ solution set of the 𝑡 𝑡ℎ generation,
 

𝑡 
𝑖 
, and the best solution so far, 𝑥 𝑡 

𝑏𝑒𝑠𝑡 
. The symbol ⊗ denotes entry-wise

ultiplications and 𝐿 ́𝑒 𝑣𝑦 ( 𝛽) denotes the random walk step provided by
évy flight, which is drawn from Lévy distribution as follows, 

 ́𝑒 𝑣𝑦 ( 𝛽) ∼ 𝑢 

|𝑣 | 1 𝛽 , (2)

here the index 𝛽 ∈ (0 , 2] , 𝑢 ∼ 𝑁(0 , 𝜎2 
𝑢 
) and 𝑣 ∼ 𝑁(0 , 𝜎2 

𝑣 
) are drawn from

ormal distribution with 

𝑢 = 

{ 

Γ(1 + 𝛽) 𝑠𝑖𝑛 ( 𝜋𝛽2 ) 

Γ
( (1+ 𝛽) 

2 

)
𝛽2 

𝛽−1 
2 

} 

1 
𝛽 , 𝜎𝑣 = 1 , (3)

here Γ( ⋅) is the standard Gamma function. The second rule is imple-
ented by taking the best solution set into the next iteration and the

ast rule is implemented by replacing the worse solution sets with new
561 
andomly generated solution sets with the probability of 𝑝𝑎 . This re-
lacement using a local random walk can be mathematically defined as
60] 

 

𝑡 +1 
𝑖 

= 𝑥 𝑡 
𝑖 
+ 𝛼 ⊗𝐻( 𝜖 − 𝑝𝑎 ) , (4)

here 𝐻( ⋅) is a Heaviside function used to judge whether the host bird
jects the egg and is replaced or remains in the nest, 𝜖 ∈ [0 , 1] is a ran-
om number drawn from a uniform distribution and 𝛼 = 𝜖( 𝑥 𝑡 

𝑗 
− 𝑥 𝑡 

𝑘 
) de-

otes the step size, where 𝑥 𝑡 
𝑗 

and 𝑥 𝑡 
𝑘 

are two different randomly selected

olutions at 𝑡 𝑡ℎ generation. 
To summarize, CSA is a population-based algorithm, in a way simi-

ar to the PSO. However, the solution update rule based on the elitism
sed in CSA enables that the best solutions go to the next generation.
urthermore, the randomization via Lévy flight is a random walk that is
haracterized by a probability density function and has a power law tail.
nother advantage of CSA is that only one parameter, 𝑝𝑎 , needs to be
djusted [61] . Therefore, although PSO and CSA on average can yield
imilar effectiveness or solution quality, CSA is more computationally
fficient than PSO, which will be further validated for parameter iden-
ification in Section 6.1 . 

.2. Multi-objective multi-step parameter identification framework 

In this section, the framework for the data-driven parameter identi-
cation of the EM is provided. As depicted in Fig. 4 a, the state-of-the-art
xperimental parameter measurement process [8,9] for EMs is very ex-
ensive and time-consuming, as it consists of many experiments with ex-
ensive test benches and laboratory equipment. In this work, the param-
ters marked with blue will be identified with basic testing procedures in
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Fig. 4. (a) Schematic of experiment-based parameter identification. (b) Schematic of the multi-objective multi-step data-driven identification process, together with 
the training process inspired by machine learning to overcome overfitting. 
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re-identification experiments, e.g., quasi-open circuit voltage (qOCV)
est, electrochemical impedance spectroscopy (EIS), hybrid pulse power
haracterization (HPPC) test, etc. The parameters marked with orange,
hich are usually measured with post-mortem analysis by opening the

ell, will be identified with the data-driven method. Based on the sensi-
ivity analysis results, 20 parameters with high and medium sensitivity
ere identified with the framework and the six parameters with low

ensitivity were set as nominal values within their boundaries, as the
ariances of these parameters have little influence on the model perfor-
ance. Especially, a novel multi-objective fitness function considering

oth voltage errors and capacity errors between electrodes is designed
or the first time to improve the identification accuracy of the capacity-
elated parameters. Furthermore, a multi-step identification approach is
roposed to further improve the identification accuracy of parameters
ith both high and medium sensitivity. Both the multi-objective and the
ulti-step approach are developed based on the physical understanding

f the EMs and contribute to the fast and accurate identification of the
arameters while maintaining their physical meaning. 

.2.1. Multi-objective fitness function 

To evaluate the quality of the parameter sets during the global opti-
ization process, fitness functions are needed and will have a significant

nfluence on the final identification performance. In this work, the first
erm of the objective fitness function for parameter identification with
SA is targeted at minimizing the mean-square error (MSE) between the
odel-simulated voltage, 𝑉 , and the experimentally measured voltage,
 , for a given input current as follows, 

 𝐹 𝑉 = 

1 
𝑁 𝑡 

𝑁 𝑡 ∑
1 
( 𝑉 ( 𝑡 ) − 𝑉 ( 𝑡 )) 2 , (5)

here 𝑁 𝑡 is the number of the data points of the dataset. With this fit-
ess term, the global optimization algorithm aims to find the optimal
arameter values by reducing the errors between the model output and
he measurement. Considering that all the capacity-related parameters
562 
re with high sensitivity and influence the voltage trajectories strongly,
 second fitness term is designed for the first time to constrain the error
etween the capacity of both electrodes, i.e., 𝐶 + and 𝐶 − . The capacity
rror between cathode and anode can be calculated with the identified
apacity-related parameters as follows, 

𝐹 𝐶 = abs 

( 

𝐴 ⋅ 𝐿 + ⋅ 𝜀 + 
𝑠 
⋅ 𝐹 ⋅ 𝑐 + 

𝑠, max ⋅
(
𝜃+ 0 − 𝜃

+ 
100 

)
3600 

− 
𝐴 ⋅ 𝐿 − ⋅ 𝜀 − 

𝑠 
⋅ 𝐹 ⋅ 𝑐 − 

𝑠, max ⋅
(
𝜃− 100 − 𝜃

− 
0 

)
3600 

) 

, (6) 

here 𝜃+ 0 , 𝜃
+ 
100 , 𝜃

− 
0 and 𝜃− 100 are stoichiometry values indicating the usage

f cathode and anode, which can be identified with the data from the
OCV test of the full cell and electrodes. It can be noticed that we have
ot used the absolute error of the electrode capacity because the cell ca-
acity is hard to be measured accurately, even under a very low C-rate.
nstead, the relative capacity error reflecting the difference between the
apacity of the cathode and the anode is considered. With 𝐹 𝐹 𝐶 , the iden-
ification accuracy of the capacity-related parameters can be improved
ignificantly. In summary, the total objective fitness function consists of
wo fitness terms considering both voltage error and capacity error as
ollows, 

 𝐹 𝑀 

= 

𝑁 𝑃 ∑
𝑛 =1 

𝑤 𝑉 𝑛 
𝐹 𝐹 𝑉 + 𝑤 𝑐 𝐹 𝐹 𝐶 (7)

here 𝑁 𝑃 is the number of the input profiles when multiple profiles
re used to identify the parameters, 𝑤 𝑉 𝑛 

and 𝑤 𝐶 are weights for the
orresponding fitness terms. The choice of the weights has a significant
nfluence on the identification results, which can be determined based
n the value of the error terms so that every term is on the same order
f magnitude during the optimization process. 

.2.2. Multi-step parameter identification 

The process of parameter identification using CSA starts by applying
he current profiles experimentally to the LIB cell or to the numerical
odel. The input data thus consists of the current profiles and the re-

ulting measured or simulated terminal voltage. In the beginning, ran-
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Table 3 

Cell specifications. 

Category Specification 

Manufacturer Kokam 

Type SLPB 75106100 
Nominal voltage 3.7 V 
Nominal capacity 7.5 Ah 
Cut-off voltages 2.7 V - 4.2 V 

Table 4 

Identification results of the stoi- 
chiometry parameters for the OCV 

using the method in Ref. [8] and 
CSA. 

Ref. [8] CSA 

𝜃+ 0% 0.932 0.915 
𝜃+ 100% 0.260 0.254 
𝜃− 0% 0 0.008 
𝜃− 100% 0.8292 0.855 
OCV RMSE 19.1 mV 7.4 mV 
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omized nests are initialized in the CSA, where each nest represents a
andom set of parameters within the value boundaries. For each nest,
he voltage resulting from the current profile and the parameters of the
ndividual nests is simulated and evaluated by the objective fitness func-
ion. Based on the fitness values, the nests are selected for whether up-
ating or maintaining by the updating rules. After that, the new nests
re re-evaluated by the model. This process is repeated until it reaches
he maximum generation. Finally, the identified parameter values are
cquired from the nest with minimal fitness. 

Considering that the variances of the parameters with high sensi-
ivity have a much larger influence on the voltage compared with pa-
ameters with low sensitivity, the identifiability of the parameters with
ow sensitivity will be hidden when they are varying with other high-
ensitivity parameters at the same time. To increase the identification
ccuracy of the capacity-related parameters, which have high sensitiv-
ty, and reduce the influence of the identification errors of these param-
ters on the identification accuracy of the other parameters with rela-
ively low sensitivity, a multi-step parameter identification approach
s designed in this work. As shown in Fig. 4 b, the so-called multi-
tep multi-objective cuckoo search algorithm (MMCSA) is divided into
wo identification steps. In the first step, all the parameters are identi-
ed with the multi-objective function, 𝐹 𝐹 𝑀 

. In the second step, seven
apacity-related parameters are set to be constant values, which are
dentified from the first step to reduce their influence on the identifi-
ation of the low-sensitivity parameters. All the other parameters are
dentified further with the fitness function, 𝐹 𝐹 𝑣 , as the capacity error
tness term will not change anymore. 

.2.3. Identification process overcoming overfitting 

One of the challenges of the data-driven methods is the occurrence
f overfitting, which is triggered by two main reasons, especially when
sing a small dataset: first, the EM is not able to model the dynamics of
he LIBs with 100% accuracy; second, the measurement data also con-
ains errors. Therefore, parameter identification with the metaheuristic
lgorithms may lead to overfitting of the parameters when only one
nput profile is used, which means the further reduction of the fitness
rror does not denote that the identified parameters are more accurate.
owever, when the number of input profiles increases, the computation
urden will also increase significantly, in particular when the input pro-
le is highly dynamic with a high sampling rate. Inspired by the train-

ng process of machine learning algorithms [62] , a novel identification
rocess to overcome overfitting is proposed in this work, as shown in
ig. 4 b. The experimental data is divided into three data groups, i.e.,
raining data, validation data and test data. In each identification step,
wo load profiles with low and high dynamics, e.g., discharging with
onstant current and multi-pulse test profile, are used as the training
ataset to guide the algorithm to reduce the voltage and capacity error
or 500 epochs. At the end of each training epoch, the best performance
arameter set will be validated with the validation data, i.e., a driv-
ng cycle profile with high dynamics. The minimum fitness error of the
alidation data in the first identification step will be used as the stop
riterion and the parameter set will be used as the starting parameter
et in the second identification step. Similarly, the parameters will be
dentified further with the training dataset in the second step for another
00 epochs and the final stop criterion is based on the minimum fitness
rror with the validation dataset and the related parameter set is the
nal identification result. In the end, the identified parameters will be

urther tested with new load profiles, i.e., test data, for the evaluation
f the identification accuracy. 

. Experimental 

The battery cell we used in the experiments is a commercial high-
nergy NMC pouch cell of type SLPB 75106100 manufactured by Kokam
o. Ltd. As summarized in Table 3 , the battery has a nominal voltage of
563 
.7 V and a nominal capacity of 7.5 Ah. The typical operating voltage
ange of the battery is from 2.7 V to 4.2 V. 

.1. Pre-identification experiments 

Before the data-driven identification process, parameters from the
olynomial functions of electrolyte conductivity and open circuit po-
ential (OCP) and the stoichiometry values of the OCV were identified
ith experimental data. The relationship between the electrolyte con-
uctivity and electrolyte concentration was measured under nitrogen
tmosphere by applying an alternating current and the measurement
ata at 23°C [8] was fitted with a third-order polynomial using CSA as
ollows, 

𝑒 = 0 . 1422 + 1 . 877 ⋅ 10 −3 ⋅ 𝑐 𝑒 − 1 . 3755 ⋅ 10 −6 ⋅ 𝑐 𝑒 2 + 2 . 8923 ⋅ 10 −10 ⋅ 𝑐 𝑒 3 , (8)

here the unit for 𝜎𝑒 and 𝑐 𝑒 are 𝑆∕ 𝑚 and 𝑚𝑜𝑙∕ 𝑚 

3 , respectively. The units
or the numerical parameters are different from each other so that the
nits of the two sides of Eq. 8 are the same. 

The OCP of both cathode and anode were measured by the coin half
ells with the same electrode materials originated from the Kokam cell
nd the measurement data was fitted with the nonlinear functions with
he CSA as follows, 

𝑈 + = 2 . 11 ⋅ 10 −6 + 110 . 52(1 − 𝜃𝑝 ) − 1361 . 72(1 − 𝜃𝑝 ) 2 + 9188 . 4(1 − 𝜃𝑝 ) 3 
37148 . 0(1 − 𝜃𝑝 ) 4 + 94012(1 − 𝜃𝑝 ) 5 − 150327(1 − 𝜃𝑝 ) 6 + 147704 . 4(1 − 𝜃𝑝 ) 7 

−81484 . 34(1 − 𝜃𝑝 ) 8 + 19336 . 88(1 − 𝜃𝑝 ) 9 − 0 . 1 𝑒 −57824 . 14 𝜃
115 
𝑝 

(9) 

 

− = 0 . 1379 + 0 . 7526 𝑒 −35 . 61 𝜃𝑛 − 0 . 0153 𝑡𝑎𝑛ℎ ( 𝜃𝑛 −0 . 6142 
0 . 0156 

) − 0 . 1312 𝑡𝑎𝑛ℎ ( 𝜃𝑛 −0 . 3173 
0 . 0721 

) 
−0 . 1212 𝑡𝑎𝑛ℎ ( 𝜃𝑛 −0 . 2120 

0 . 0940 
) − 0 . 1291 𝑡𝑎𝑛ℎ ( 𝜃𝑛 −0 . 4524 

0 . 1584 
) − 0 . 1099 𝑡𝑎𝑛ℎ ( 𝜃𝑛 −0 . 3976 

0 . 1596 
) 

−0 . 1083 𝑡𝑎𝑛ℎ ( 𝜃𝑛 −0 . 4246 
0 . 1539 

) − 0 . 1543 𝑡𝑎𝑛ℎ ( 𝜃𝑛 −0 . 4003 
0 . 0985 

) + 0 . 7192 𝑡𝑎𝑛ℎ ( 𝜃𝑛 −0 . 3684 
0 . 1573 

) 

(10) 

here 𝑈 

+ and 𝑈 

− are the OCP of the cathode and anode, respectively,
= 𝑐 𝑠𝑠 ∕ 𝑐 𝑠,𝑚𝑎𝑥 represents the lithiation level of the electrode. The stoi-

hiometry parameters, 𝜃+ 0% , 𝜃
+ 
100% , 𝜃

− 
0% and 𝜃− 100% , dedicate the lithiation

f cathode and anode at 0% and 100% SOC. To further determine the
toichiometry values, the OCV of the full cell was measured under con-
tant charging and discharging with 𝐶∕20 . As shown in Fig. 5 , these four
arameters were identified by minimizing the error between the mea-
ured OCV and simulated OCV with the half-cell OCPs using CSA. The
dentified values of the stoichiometry parameters are also summarized
n Table 4 . Compared with the cell balancing method in Ref. [8] , the
oot-mean-sqaure error (RMSE) between the measured OCV and fitted
CV decreases from 19.1 mV to 7.4 mV, demonstrating the high iden-

ification accuracy with the CSA. It is also worth mentioning that, the
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Fig. 5. (a) Fitting results of the cathode OCP. (b) Fitting results of the anode OCP. (c) Cell balancing results to determine the stochiometry parameters, 𝜃+ 0% , 𝜃
+ 
100% , 

𝜃− 0% , 𝜃
− 
100% . 

Table 5 

List of the experimental tests for data generation. 

Load profile Data group Dynamic Duration 

2C discharge Training low 39 min 
Multi-pulse test Training high 420 min 
WLTP 1 Test high 257 min 
WLTP 2 Validation high 463 min 
WLTP 3 Test high 931 min 
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our stoichiometry parameters can also be identified together with the
ther physical parameters with the proposed data-driven method. 

.2. Experiments for data generation 

To generate the dataset for the data-driven identification of P2D
odel parameters, a battery cell is connected with the test bench, which

onsists of a Digatron battery tester (MCFT 20-5-60 ME), a control PC, a
inder thermal chamber (Binder MK54), and a data logger. During the
xperiments, the battery was placed in the thermal chamber to remain
t a constant environment temperature of 25°C. The real-time measure-
ents during tests are the input current, 𝐼 , and terminal voltage, 𝑉 .

urthermore, five experiments with different load profiles were carried
ut to generate the data for parameter identification. The test details and
he categorization of the load profiles for the experiments are summa-
ized in Table 5 . Considering the short simulation time and variances
n load dynamics, the measurement data under two standard testing
564 
rofile, constant-current discharging test and multi-pulse test, were se-
ected as the training data. As the aim of this work is developing a
ast data-driven parameter identification approach for the application
f EMs under real-world operating conditions with high dynamics, the
orldwide Harmonized Light-Duty Vehicles Test Procedure (WLTP) 2

est data was chosen as validation data to determine the stop criterion in
he identification process. WLTP 1 test data and WLTP 3 test data were
elected as the test dataset to evaluate the identification performance
t the end of the data-driven identification process. The WLTP profiles
onsist of charging and discharging current pulses with various C-rates
nder various time duration. Compared with the constant-current dis-
harging profile where the OCV is the dominating factor, the real-world
riving cycles are more challenging for the validation of the parameter
dentification as both capacity-related parameters and other parameters
eed to be accurate enough to ensure a good model performance. 

Although the sampling time used in the data logging within the ex-
erimental tests is 0.1 s, 1 s is chosen as the sampling time in the simula-
ion to reduce the total computational time for parameter identification.
he whole dataset used in this work has 126600 data points with 1 s as
he sampling time. It is worth mentioning that the experimental tests
ummarized in Table 5 are only one example of the possible tests for
ata generation and other tests can also be chosen. As one of the high-
ights in this work is to avoid the overfitting problem with the machine
earning-inspired identification process when a small dataset is avail-
ble, only two profiles are used as training profiles. A larger number of
raining profiles can also be used to further increase the identification
ccuracy but with a significant increase of the computational time. Al-
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Table 6 

Summary of the parameter identification results with CSA, MCSA and MMCSA. 

Parameter Unit Virtual value CSA MCSA MMCSA 
APE [%] APE [%] APE [%] 

High sensitivity 
𝐿 + 𝜇m 54.6 11.07 6.62 6.65 
𝐿 − 𝜇m 60.6 12.08 7.87 13.67 
𝑐 + 
𝑠,𝑚𝑎𝑥 

mol m 

−3 50778 3.47 2.57 2.07 
𝑐 − 
𝑠,𝑚𝑎𝑥 

mol m 

−3 32095 3.58 3.43 3.71 
𝜀 + 
𝑠 

- 0.4322 9.41 7.33 7.09 
𝜀 − 
𝑠 

- 0.4815 8.11 4.19 8.64 
𝐴 m 2 0.3828 1.22 0.98 0.82 
𝜅+ m 

2 . 5 s −1 mol −0 . 5 6 . 82 × 10 −11 28.09 30.28 23.54 
𝜅− m 

2 . 5 s −1 mol −0 . 5 9 . 19 × 10 −11 69.77 61.24 21.65 
𝑅 + 
𝑝 

𝜇m 7.08 22.18 29.51 20.16 
𝑅 − 
𝑝 

𝜇m 8.71 17.85 13.39 14.66 
𝐷 + 
𝑠 

m 2 ∕ s 5 . 04 × 10 −14 40.66 56.76 43.68 
𝐷 − 
𝑠 

m 2 ∕ s 2 . 98 × 10 −14 46.03 29.32 32.71 
𝑅 𝑓 Ωm 2 0.0081 27.82 20.09 9.98 
Medium sensitivity 
𝜀 + 
𝑒 

- 0.3867 10.61 21.75 16.03 
𝜀 − 
𝑒 

- 0.4373 19.55 13.81 4.64 
𝐷 𝑒 m 2 ∕ s 1 . 77 × 10 −10 16.77 27.91 10.83 
𝑐 𝑒, 0 mol m 

−3 1133 6.75 4.79 5.95 
𝐿 𝑠 𝜇m 23.1 29.73 33.34 23.48 
𝑡 0 + 0.2744 20.95 23.33 10.59 
𝐶 + A ℎ 8.138 0.038 0.005 0.017 
𝐶 − A ℎ 8.138 0.118 0.004 0.016 
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hough sparser data can also be chosen, it is strongly suggested that at
east two datasets with different dynamics should be used in the training
rocess, one dataset for the validation process and one dataset for the
est process, to avoid the overfitting of the parameters. Incomplete or
ragmented data can also be used if the dataset can cover the main SOC
ange and with different load dynamics, which are very common in the
eal operation condition. 

. Results and discussion 

In this section, the proposed data-driven parameter identification
ethod is validated not only with a virtual cell with known parame-

ers numerically but also with a commercial cell experimentally. Differ-
nt benchmarks considering algorithm, fitness function and identifica-
ion framework are used to highlight the outstanding performance of
he proposed method. Last but not least, the model performance with
he experimental identification method is also provided, discussed and
ompared with the model performance with data-driven identified pa-
ameters. 

.1. Numerical validation 

As the real values of the P2D model parameters are not accessible
nd even the invasive experimental measurements by opening the cell
annot guarantee the identification with 100% accuracy, we first val-
date the data-driven parameter identification framework numerically
ith a virtual cell with known parameters. The virtual cell consists of

he same P2D model used in the identification process, as introduced in
ection 2 , and the real values of the parameters were chosen randomly
ithin the predefined parameter boundaries, as summarized in Table 2 .
he virtual cell was tested under the load profiles, as listed in Table 5 ,
o generate the training dataset, validation dataset and test dataset. The
urrent and simulated voltage of the virtual cell were used as the input
ata for the data-driven parameter identification with the MMCSA and
ther algorithm benchmarks. 

.1.1. Comparative study with particle swarm optimization 

As the PSO has already shown notable advantages compared with
A in parameter identification for P2D models in the literature, PSO

s used as a benchmark in this work to highlight the fast convergence
nd high identification efficiency of the CSA. To compare the algorithm
erformance fairly, the fitness function in Eq. 5 for both PSO and CSA
as set to be the same and the hyperparameters of the PSO and CSA
ere also tuned with trial-and-error procedures to guarantee the best
erformance of each algorithm. 

Due to the algorithm difference, the parameter sets are updated and
imulated in each identification iteration once with PSO but twice with
SA. Therefore, the simulation number rather than the iteration num-
er can represent the real computation time of the algorithm, which
s then used as the index for a fair comparison. The development of
he fitness values for 2000 simulations during the parameter identifi-
ation with PSO and CSA are shown in Fig. 6 . The convergence speed
f the CSA is much faster than that of the PSO. Furthermore, the fit-
ess RMSE of the PSO remains almost unchanged after 500 simulations,
hile the fitness RMSE of the CSA continues decreasing, indicating the
igher ability of the CSA in finding the global optimization point in such
 complex nonlinear system compared with the PSO. The final fitness
MSE of the parameter sets under PSO and CSA is 0.721 mV and 0.215
V, respectively, indicating that CSA can identify the parameters more

fficiently. The higher convergence speed and better effectiveness in
arameter identification of nonlinear systems with the CSA compared
o PSO are mainly due to the following two reasons. First, there are
ewer hyperparameters in CSA that need to be optimized to achieve a
igh performance of the algorithm, making it easier to select the hy-
erparameters. Second, the combination of the local optimization by
he random walk and the global optimization by the random steps via
565 
évy flights is a very efficient method to search the global optimization
olution in the search space. The comparison results with the PSO fur-
her highlights the high convergence speed and efficiency of the CSA in
arameter identification for the P2D model. 

.1.2. Validation of the multi-objective multi-step approach 

To verify the improvement of the parameter identification accu-
acy with the multi-objective multi-step approach, two identification
pproaches based on CSA were further implemented as benchmarks.
he first benchmark algorithm is the CSA with Eq. 5 as the fitness func-
ion, where only the voltage error between the measurement and model
utput is considered, which corresponds to the approach in most of the
iterature. The second benchmark algorithm is the multi-objective CSA
MCSA) with Eq. 7 as fitness function but without the second identifica-
ion step to further improve the identification accuracy of the parame-
ers with medium sensitivity. 

The final parameter identification results with CSA, MCSA and MM-
SA, are summarized in Table 6 , where the absolute percentage errors
APEs) of the parameters are highlighted for all the algorithms. It is clear
hat most of the parameters with high sensitivity can be identified with
etter accuracy with MCSA compared to CSA, which is due to the multi-
bjective function, which further reduces the identification errors of the
apacity-related parameters. Furthermore, most of the parameters with
edium sensitivity can be identified with higher accuracy with MM-
SA compared with MCSA, benefiting from the second identification
tep where some of the high-sensitivity parameters remain constant and
herefore reduce their negative influence on the identification of the
ther parameters. As a result of the fitness term in Eq. 6 , MCSA and MM-
SA not only show much lower capacity identification errors for both
athode and anode, compared with CSA but also approach to the same
alue, which is critical for reproducing the cell dynamics. In Table 7 , the
ean APE of all the high-sensitivity parameters, 𝑀𝑃 𝐸 𝐻 

, the mean APE
f all the medium-sensitivity parameters, 𝑀𝑃 𝐸 𝑀 

, the mean APE of all
he parameters, 𝑀𝑃 𝐸 𝑡𝑜𝑡𝑎𝑙 , and the voltage RMSE of all the algorithms
re summarized. It can be seen that MMCSA has achieved the lowest
rrors in all the performance indexes, which further highlights the out-
tanding ability of the proposed algorithm in parameter identification
or the P2D model. 
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Fig. 6. Numerical validation results. (a) The fitness value, RMSE, of the parameter identification using PSO and CSA for the first 2000 simulations. Mean percentage 
error of (b) capacity-related parameters and (c) other parameters identified with CSA, MCSA and MMCSA within ten numerical identifications. The dash lines 
represent the mean value of the APEs. 

Table 7 

Comparision results with CSA, MCSA and MMCSA. 

Parameter Unit CSA MCSA MMCSA 

𝑀𝑃𝐸 𝐻 % 21.52 19.54 14.93 
𝑀𝑃𝐸 𝑀 % 17.39 20.82 11.92 
𝑀𝑃𝐸 𝑡𝑜𝑡𝑎𝑙 % 20.28 19.9 14.03 
Voltage 𝑅𝑀𝑆𝐸 mV 0.095 0.104 0.068 
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Considering the randomness of the metaheuristic algorithms, ten
imulations were performed with CSA, MCSA and MMCSA to further
ompare their performance and mitigate the influence of the uncertainty
f each simulation. In Fig. 6 b, the APE of the capacity-related parame-
ers are shown for CSA and MCSA. As expected, MCSA has reduced the
ean APE of the capacity-related parameters by 32.9% compared with
SA. The APE of all the other parameters, together with the MPEs for
SA, MCSA and MMCSA, are further depicted in Fig. 6 c. For the other
arameters, the advantage of the MMCSA algorithm is highly noticeable.
s CSA and MCSA don’t have a second identification step, the MPEs of

he other parameters are much higher than those of the MMCSA. MM-
SA further reduces the identification error of the other parameters by
4.9%, which leads to a lower voltage error and demonstrates the sig-
ificance of the multi-step identification approach. 
566 
.2. Experimental validation 

After the numerical evaluation of the performance of the data-driven
arameter identification algorithms, the MMCSA was used to identify
he parameters of the Kokam cell, as described in Section 5 , based on
he measurement data. For this purpose, the framework described in
ection 4.2 was used and the test data with different load profiles were
ivided into three groups, as summarized in Table 5 . The data of the 2C
ischarge and the multi-pulse test were used as training data. The data
f the WLTP 2 was used as validation data, whereas WLTP 1 and WLTP
 were used as test data. 

For the data-driven parameter identification, 500 iterations each
ere performed for the first and second steps. For each iteration, 25
ests were considered. The simulations were executed with an Intel
eon Platinum 8160 processor with 26 cores and both steps of the MM-
SA took about 15 hours. As introduced in Section 4.2 , the weight tuning

n the multi-objective fitness function is a nontrivial task and needs to
alance the convergence of each fitness term considering their magni-
udes. During the simulations, it was found that a stronger weighting
f the 2C discharge profile in both steps led to significantly lower over-
tting of the training data and thus continuously reduced the voltage
SE of the validation profile with the iterations. In contrast, a stronger
eighting of the pulse profile resulted in significant overfitting, which is

hown by the high voltage error under the WLTP 2 profile. The simula-
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Fig. 7. Experimental validation results. Model performance with the training dataset (a) 2C discharge and (b) multi-pulse test. Model performance with the validation 
dataset (c) WLTP 2, test dataset (d) WLTP 1 and (e) WLTP 3. (f) The RMSEs of the P2D model in all the datasets. 
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Table 8 

Summary of the values of the identified parameters using the experimen- 
tal measurement and the MMCSA 

Parameter Sensitivity Unit Measurement MMCSA 

𝐿 + High 𝜇m 54.5 61.04 
𝐿 − High 𝜇m 73.7 66.39 
𝑐 + 
𝑠,𝑚𝑎𝑥 

High mol m 

−3 48580 48839 
𝑐 − 
𝑠,𝑚𝑎𝑥 

High mol m 

−3 31920 31410 
𝜀 + 
𝑠 

High - 0.4083 0.3661 
𝜀 − 
𝑠 

High - 0.3724 0.4090 
𝐴 High m 2 0.3949 0.3887 
𝜅+ High m 

2 . 5 s −1 mol −0 . 5 3 . 0 × 10 −11 4 . 4 × 10 −11 

𝜅− High m 

2 . 5 s −1 mol −0 . 5 11 . 1 × 10 −11 3 . 5 × 10 −11 

𝑅 + 
𝑝 

High 𝜇m 6.49 6.53 
𝑅 − 
𝑝 

High 𝜇m 13.7 8.55 
𝐷 + 
𝑠 

High m 2 ∕ s 9 . 00 × 10 −14 9 . 49 × 10 −14 

𝐷 − 
𝑠 

High m 2 ∕ s 10 . 00 × 10 −14 9 . 97 × 10 −14 

𝑅 𝑓 High Ωm 2 0 0.0001 
𝜀 + 
𝑒 

Medium - 0.296 0.3770 
𝜀 − 
𝑒 

Medium - 0.329 0.2301 
𝐷 𝑒 Medium m 2 ∕ s 2 . 40 × 10 −10 6 . 82 × 10 −10 

𝑐 𝑒, 0 Medium mol m 

−3 1000 1137 
𝐿 𝑠 Medium 𝜇m 19.0 11.37 
𝑡 0 + Medium - 0.2600 0.2300 
𝐶 + - Ah 7.6886 7.5202 
𝐶 − - Ah 7.6144 7.5236 

p  

7  
ions showed that a weighting of 𝑤 𝑉 1 = 0 . 8 for the 2C profile, 𝑤 𝑉 2 = 0 . 2
or the pulse profile in both steps and additionally 𝑤 𝑐 = 0 . 0005 for the
apacity in the first step provided the best results. 

Fig. 7 shows the results of the data-driven parameter identification
ith MMCSA under different load profiles with both low and high dy-
amics. It can be seen that the data-driven parameter identification with
MCSA provides a parameter set that performs well with the training

ata as well as with the validation data and test data. While the RMSEs
f the training profiles are slightly above 10 mV, the validation profiles
ith 11.4 mV RMSE and the test profiles with less than 13 mV RMSEs
oth achieve a good fitting result over the whole profile, demonstrating
he high generalization ability of the multi-objective multi-step identi-
cation approach. The relatively larger voltage errors at low SOC range
nd high currents are mainly due to the OCV fitting error, model inac-
uracies and measurement errors. 

To further compare the identification accuracy of the proposed data-
riven method with the state-of-the-art experimental method, the pa-
ameters determined for the same cell with an invasive experimental
ethod by opening the cell in the previous work of our lab [8,9] were
sed as a benchmark. The parameter values of the experimental and
ata-driven method are summarized in Table 8 . Although several param-
ters have shown differences in two parameter sets, the magnitudes of
he identified parameters are the same as those of the measured param-
ters, which highlights the physical meaning of the identified parame-
ers. As the measurement of the parameters with invasive experimental
ethods cannot avoid measurement errors, the variances between the

wo parameter set in Table 8 cannot be used as the metric to evaluate
he performance of the proposed data-driven method. The electrode ca-
s  

567 
acities calculated with the parameters identified by the MMCSA are
.5202 Ah and 7.5236 Ah for cathode and anode, respectively, which
hows a high consistency and also corresponds to the cell capacity spec-
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Fig. 8. Comparative study between the experimental and data-driven parameter identifications. Performance of the model under 2C discharge with the parameters 
identified with (a) the invasive experimental method and (b) the data-driven method. (c) Error distributions of the invasive experimental and data-driven parameter 
identification results under 2C discharge. Performance of the model under WLTP 1 with the parameters identified with (d) the invasive experimental method and 
(e) the data-driven method. (f) Error distributions of the invasive experimental and data-driven parameter identification results under WLTP 1. 

Table 9 

Comparison of the voltage errors and capacity error of the experimental 
identification method and the data-driven identification method with 
MMCSA. 

2C discharge WLTP 1 

Experimental MMCSA Experimental MMCSA 

Voltage RMSE 50.1 mV 9 mV 31.4 mV 12.7 mV 
Voltage MAE 45.7 mV 6.4 mV 24.7 mV 10.6 mV 
Δ capacity 74.2 mAh 3.4 mAh 74.2 mAh 3.4 mAh 
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fied by the manufacturer. In contrast, the capacity of the cathode and
node calculated with the parameters measured by the invasive exper-
mental method has shown a much larger difference, which also differs
rom the capacity value in the cell specifications. 

The performance of the experimental and data-driven parameter
dentification methods are further compared under a low dynamic load
rofile and a high dynamic load profile, as shown in Fig. 8 , and the
oltage and capacity errors are also summarized in Table 9 . It can be
bserved that the data-driven method performed much better than the
nvasive experimental method considering the voltage error between the
easurement and the model output, which is contributed by the high

ccuracy of both the capacity-related and impedance-related parame-
ers. The voltage errors of the model with the experimentally measured
arameters, especially in the lower SOC range, are significantly higher
han those with the data-driven identified parameters in both constant-
568 
urrent discharging and WLTP profiles. While the voltage MAEs of the
ata-driven method under 2C discharge and WLTP 1 are 6.4 mV and
0.6 mV, respectively, the voltage MAEs of the experimental identifica-
ion method are 45.7 mV and 24.7 mV for the same profiles. The capacity
rror of the data-driven method is 3.4 mAh, which is only 4.6% of that of
he experimental identification. Therefore, it can be concluded that the
ata-driven parameter identification approach with MMCSA not only
aves time and cost of the whole identification process but also pro-
ides P2D model parameters that provide a significantly lower model
rror compared with state-of-the-art invasive experimental identifica-
ion methods by opening the cell. The high uncertainty of the capacity-
elated parameters may lead to over-charging or over-discharging of the
attery cells with a wrong SOC estimation. Furthermore, the identifica-
ion errors in impedance-related parameters can not only lead to errors
n state estimation but also increase the error in power prediction of
IBs, which may affect the energy management [63–66] or cause safety
roblems. 

.3. Future work and applications 

In the future, we aim to expand the scope of this work in various
irections, one of which is expanding the identification ability of the
ramework for electrochemical-thermal models by further considering
he identification of thermal parameters. A major step would be ana-
yzing the sensitivity of the thermal and physical parameters to voltage
nd temperature measurement with a variance-based global sensitivity
nalysis method, further increasing the sensitivity analysis accuracy. To
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dentify the parameters, which are valid for a large operating tempera-
ure range, the battery testing procedures need to be expanded for tests
nder various temperatures. 

Another key expansion to the framework is investigating identifica-
ion methods for the aging-related parameters of EMs under operation.
irst, electrode level aging mechanisms can be understood by identify-
ng the parameters for each electrode and the contributions of loss of
ithium inventory (LLI) and loss of active material (LAM) to battery ag-
ng can be clarified by identifying the stoichiometry parameters of the
ell balancing online. The updated model parameters can be sent to the
attery systems in EVs by Over-the-Air-Update technology [67] , guar-
nteeing the reliability of the EM-based battery management functions,
uch as fast charging, over the whole lifetime of EVs. 

. Conclusions 

This work aims to develop a parameter identification framework that
s suitable for fast and accurate identification of physical parameters of
lectrochemical models under real-world operation. The proposed data-
riven parameter identification framework not only shows significant
erformance improvement compared with the other data-driven meth-
ds but also shows a higher identification accuracy compared with the
tate-of-the-art experimental identification method. Several highlights
f the framework are given below. 

• Identifies 26 parameters of an electrochemical model only based
on voltage and current measurement and overcomes the overfitting
problem by a novel identification process inspired by the training
process in machine learning. 

• Multi-objective fitness functions are considered, improving the
identification accuracy of capacity-related parameters significantly,
which is essential for a low voltage error between the model and the
cell. 

• Multi-step identification procedure reduces the negative influences
of the identification of the high-sensitivity parameters on the iden-
tification of the low-sensitivity parameters, therefore, increases the
identifiability and reduces the identification errors. 

• Cuckoo search algorithm identifies the parameters more accurately
and with a faster convergence speed compared with other meta-
heuristic algorithms, e.g., particle swarm optimization. 

• Compared with the experimental identification method, the pro-
posed data-driven approach reduces 82.0% and 59.6% of the voltage
error under low and high load dynamics, respectively, and reduces
95.4% capacity error between two electrodes. 

At the time of review for this work, no comparable work was found
n the same domain, which implements a cuckoo search algorithm under
 multi-objective multi-step framework for the identification of parame-
ers for lithium-ion electrochemical models. The validation of the iden-
ification framework not only with a virtual cell numerically and with a
ommercial cell experimentally are conducted to show the viability of
cceptance of data-driven methods in future battery research. 
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